List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3901753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
2	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
3	Regulation of Pituitary Cell Function by Adiponectin. Endocrinology, 2007, 148, 401-410.	2.8	185
4	Direct Pituitary Effects of Kisspeptin: Activation of Gonadotrophs and Somatotrophs and Stimulation of Luteinising Hormone and Growth Hormone Secretion. Journal of Neuroendocrinology, 2007, 19, 521-530.	2.6	177
5	International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacological Reviews, 2018, 70, 763-835.	16.0	163
6	Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Molecular and Cellular Endocrinology, 2006, 257-258, 75-83.	3.2	139
7	Intracellular Signaling Mechanisms Mediating Chrelin-Stimulated Growth Hormone Release in Somatotropes. Endocrinology, 2003, 144, 5372-5380.	2.8	132
8	Identification and Characterization of Two Novel Truncated but Functional Isoforms of the Somatostatin Receptor Subtype 5 Differentially Present in Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2634-2643.	3.6	125
9	Novel Expression and Direct Effects of Adiponectin in the Rat Testis. Endocrinology, 2008, 149, 3390-3402.	2.8	122
10	Intracellular signaling pathways activated by kisspeptins through GPR54: Do multiple signals underlie function diversity?. Peptides, 2009, 30, 10-15.	2.4	103
11	Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Molecular and Cellular Endocrinology, 2010, 317, 154-160.	3.2	101
12	Role of ghrelin system in neuroprotection and cognitive functions: Implications in Alzheimer's disease. Peptides, 2011, 32, 2225-2228.	2.4	91
13	TRH acts as a multifunctional hypophysiotropic factor in vertebrates. General and Comparative Endocrinology, 2009, 164, 40-50.	1.8	89
14	Expression of the Ghrelin and Neurotensin Systems is Altered in the Temporal Lobe of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 22, 819-828.	2.6	89
15	Understanding the Multifactorial Control of Growth Hormone Release by Somatotropes. Annals of the New York Academy of Sciences, 2009, 1163, 137-153.	3.8	88
16	A Potential Inhibitory Role for the New Truncated Variant of Somatostatin Receptor 5, sst5TMD4, in Pituitary Adenomas Poorly Responsive to Somatostatin Analogs. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2497-2502.	3.6	88
17	Kisspeptin Regulates Gonadotroph and Somatotroph Function in Nonhuman Primate Pituitary via Common and Distinct Signaling Mechanisms. Endocrinology, 2011, 152, 957-966.	2.8	85
18	Molecular Pathogenesis of Neuroendocrine Tumors: Implications for Current and Future Therapeutic Approaches. Clinical Cancer Research, 2013, 19, 2842-2849.	7.0	80

#	Article	lF	CITATIONS
19	Circulating miRNAs as Predictive Biomarkers of Type 2 Diabetes Mellitus Development in Coronary Heart Disease Patients from the CORDIOPREV Study. Molecular Therapy - Nucleic Acids, 2018, 12, 146-157.	5.1	80
20	Obestatin regulates adipocyte function and protects against dietâ€induced insulin resistance and inflammation. FASEB Journal, 2012, 26, 3393-3411.	0.5	79
21	Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Medicine, 2020, 17, e1003282.	8.4	77
22	Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. Journal of Endocrinology, 2014, 220, R1-R24.	2.6	75
23	Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation,) Tj ETQq1 1 0.784	1314 rgBT 7.2	/Oyerlock 10
24	Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine, 2020, 51, 102547.	6.1	71
25	Dimerization of G protein-coupled receptors: New avenues for somatostatin receptor signalling, control and functioning. Molecular and Cellular Endocrinology, 2008, 286, 63-68.	3.2	69
26	Expression of Somatostatin, Cortistatin, and Their Receptors, as well as Dopamine Receptors, but not of Neprilysin, are Reduced in the Temporal Lobe of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 20, 465-475.	2.6	67
27	A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in Breast Cancer: Potential Pathophysiological Relevance. PLoS ONE, 2011, 6, e23302.	2.5	67
28	Somatostatin and its receptors from fish to mammals. Annals of the New York Academy of Sciences, 2010, 1200, 43-52.	3.8	66
29	The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene, 2012, 31, 2049-2061.	5.9	65
30	Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro. Journal of Endocrinology, 2016, 231, 135-145.	2.6	62
31	Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cellular and Molecular Life Sciences, 2010, 67, 1147-1163.	5.4	59
32	Cortistatin Is Not a Somatostatin Analogue but Stimulates Prolactin Release and Inhibits GH and ACTH in a Gender-Dependent Fashion: Potential Role of Ghrelin. Endocrinology, 2011, 152, 4800-4812.	2.8	59
33	Are somatostatin and cortistatin two siblings in regulating endocrine secretions? In vitro work ahead. Molecular and Cellular Endocrinology, 2008, 286, 128-134.	3.2	57
34	A Cellular and Molecular Basis for the Selective Desmopressin-Induced ACTH Release in Cushing Disease Patients: Key Role of AVPR1b Receptor and Potential Therapeutic Implications. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4160-4169.	3.6	56
35	Obesity-Induced Hypogonadism in the Male: Premature Reproductive Neuroendocrine Senescence and Contribution of Kiss1-Mediated Mechanisms. Endocrinology, 2014, 155, 1067-1079.	2.8	56
36	Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic \hat{I}^2 cells. JCI Insight, 2021, 6, .	5.0	55

#	Article	IF	CITATIONS
37	Insulin resistance determines a differential response to changes in dietary fat modification on metabolic syndrome risk factors: the LIPGENE study. American Journal of Clinical Nutrition, 2015, 102, 1509-1517.	4.7	54
38	Targeted Systemic Treatment of Neuroendocrine Tumors: Current Options and Future Perspectives. Drugs, 2019, 79, 21-42.	10.9	54
39	Splicing machinery dysregulation drives glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain, 2020, 143, 3273-3293.	7.6	54
40	Homologous and Heterologous Regulation of Pituitary Receptors for Ghrelin and Growth Hormone-Releasing Hormone. Endocrinology, 2004, 145, 3182-3189.	2.8	53
41	Somatotroph Tumor Progression during Pegvisomant Therapy: A Clinical and Molecular Study. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E251-E259.	3.6	53
42	Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age, 2012, 34, 389-403.	3.0	53
43	In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. Scientific Reports, 2015, 5, 8714.	3.3	53
44	Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3389-3402.	3.6	52
45	In Vivo and in Vitro Structure-Activity Relationships and Structural Conformation of Kisspeptin-10-Related Peptides. Molecular Pharmacology, 2009, 76, 58-67.	2.3	50
46	Cortistatin Inhibits Migration and Proliferation of Human Vascular Smooth Muscle Cells and Decreases Neointimal Formation on Carotid Artery Ligation. Circulation Research, 2013, 112, 1444-1455.	4.5	50
47	Rab18 Inhibits Secretory Activity in Neuroendocrine Cells by Interacting with Secretory Granules. Traffic, 2007, 8, 867-882.	2.7	48
48	Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Letters, 2021, 496, 72-83.	7.2	48
49	Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Translational Research, 2019, 212, 89-103.	5.0	47
50	Truncated somatostatin receptors as new players in somatostatin–cortistatin pathophysiology. Annals of the New York Academy of Sciences, 2011, 1220, 6-15.	3.8	45
51	Insulin and IGF-I Inhibit GH Synthesis and Release in Vitro and in Vivo by Separate Mechanisms. Endocrinology, 2013, 154, 2410-2420.	2.8	45
52	Ghrelin Is Produced by and Directly Activates Corticotrope Cells from Adrenocorticotropin-Secreting Adenomas. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2225-2231.	3.6	44
53	Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. Journal of Cellular and Molecular Medicine, 2018, 22, 1640-1649.	3.6	44
54	Somatostatin Dramatically Stimulates Growth Hormone Release from Primate Somatotrophs Acting at Low Doses Via Somatostatin Receptor 5 and Cyclic AMP. Journal of Neuroendocrinology, 2012, 24, 453-463.	2.6	42

JUSTO P CASTAñO

#	Article	IF	CITATIONS
55	Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary Anterior Pituitary Cell Cultures from Two Primate Species. Scientific Reports, 2017, 7, 43537.	3.3	41
56	The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer. FASEB Journal, 2017, 31, 4682-4696.	0.5	41
57	The oncogenic role of the In1-ghrelin splicing variant in prostate cancer aggressiveness. Molecular Cancer, 2017, 16, 146.	19.2	41
58	Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors. Oncotarget, 2016, 7, 6593-6608.	1.8	39
59	Type 2 Diabetes in Neuroendocrine Tumors: Are Biguanides and Statins Part of the Solution?. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 57-73.	3.6	38
60	Somatostatin Stimulates GH Secretion in Two Porcine Somatotrope Subpopulations through a cAMP-Dependent Pathway. Endocrinology, 2002, 143, 889-897.	2.8	37
61	Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins. FEBS Letters, 2007, 581, 3149-3156.	2.8	34
62	Ghrelin Induces Growth Hormone Secretion Via a Nitric Oxide /cGMP Signalling Pathway. Journal of Neuroendocrinology, 2008, 20, 406-412.	2.6	34
63	Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E46-E54.	3.5	34
64	The Somatostatin Analogue Octreotide Inhibits Growth of Small Intestine Neuroendocrine Tumour Cells. PLoS ONE, 2012, 7, e48411.	2.5	34
65	A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors. Clinical Cancer Research, 2020, 26, 957-969.	7.0	34
66	Neuroendocrine neoplasms: current and potential diagnostic, predictive and prognostic markers. Endocrine-Related Cancer, 2019, 26, R157-R179.	3.1	34
67	Porcine Somatostatin Receptor 2 Displays Typical Pharmacological sst2 Features but Unique Dynamics of Homodimerization and Internalization. Endocrinology, 2007, 148, 411-421.	2.8	33
68	Somatostatin and somatostatin analogues reduce PDGF-induced endometrial cell proliferation and motility. Human Reproduction, 2012, 27, 2117-2129.	0.9	33
69	Paradoxical Effect of Cortistatin Treatment and Its Deficiency on Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 2144-2154.	0.8	32
70	Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 179-192.	5.7	32
71	Eâ€cadherin expression is associated with somatostatin analogue response in acromegaly. Journal of Cellular and Molecular Medicine, 2019, 23, 3088-3096.	3.6	32
72	Application of a Percoll Density Gradient to Separate and Enrich Porcine Pituitary Cell Types. Journal of Neuroendocrinology, 1993, 5, 257-266.	2.6	31

JUSTO P CASTAñO

#	Article	IF	CITATIONS
73	Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Molecular and Cellular Endocrinology, 2016, 438, 100-106.	3.2	31
74	Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine, 2018, 59, 426-437.	2.3	31
75	In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters. Oncotarget, 2015, 6, 19619-19633.	1.8	31
76	Identification of the Somatostatin Receptor Subtypes (sst) Mediating the Divergent, Stimulatory/Inhibitory Actions of Somatostatin on Growth Hormone Secretion. Endocrinology, 2006, 147, 2902-2908.	2.8	30
77	Urotensin II and urotensin II-related peptide activate somatostatin receptor subtypes 2 and 5. Peptides, 2008, 29, 711-720.	2.4	30
78	Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed in prostate cancer, and its levels are associated with patient's metabolic status: Potential value as a non-invasive biomarker. Cancer Letters, 2016, 383, 125-134.	7.2	30
79	Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways. Molecular Cancer Research, 2017, 15, 862-874.	3.4	30
80	Splicing Machinery is Dysregulated in Pituitary Neuroendocrine Tumors and is Associated with Aggressiveness Features. Cancers, 2019, 11, 1439.	3.7	30
81	Biguanides Exert Antitumoral Actions in Pituitary Tumor Cells Through AMPK-Dependent and -Independent Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3501-3513.	3.6	30
82	Dynamic monitoring and quantification of gene expression in single, living cells: a molecular basis for secretory cell heterogeneity. Molecular Endocrinology, 1996, 10, 599-605.	3.7	30
83	Cortistatin: not just another somatostatin analog. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 356-357.	2.8	29
84	Cortistatin mimics somatostatin by inducing a dual, dose-dependent stimulatory and inhibitory effect on growth hormone secretion in somatotropes. Journal of Molecular Endocrinology, 2006, 36, 547-556.	2.5	29
85	Changes in Splicing Machinery Components Influence, Precede, and Early Predict the Development of Type 2 Diabetes: From the CORDIOPREV Study. EBioMedicine, 2018, 37, 356-365.	6.1	29
86	The Truncated Isoform of Somatostatin Receptor5 (sst5TMD4) Is Associated with Poorly Differentiated Thyroid Cancer. PLoS ONE, 2014, 9, e85527.	2.5	29
87	Expression of functional KISS1 and KISS1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10. European Journal of Endocrinology, 2011, 164, 355-362.	3.7	27
88	Metabolic and Gonadotropic Impact of Sequential Obesogenic Insults in the Female: Influence of the Loss of Ovarian Secretion. Endocrinology, 2015, 156, 2984-2998.	2.8	27
89	BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas. Scientific Reports, 2017, 7, 42002.	3.3	27
90	Breast cancer is associated to impaired glucose/insulin homeostasis in premenopausal obsee/overweight patients. Oncotarget, 2017, 8, 81462-81474.	1.8	27

#	Article	IF	CITATIONS
91	Differential Contribution of Nitric Oxide and cGMP to the Stimulatory Effects of Growth Hormone-Releasing Hormone and Low-Concentration Somatostatin on Growth Hormone Release from Somatotrophs. Journal of Neuroendocrinology, 2005, 17, 577-582.	2.6	26
92	Gastrointestinal neuroendocrine tumors (NETs): new diagnostic and therapeutic challenges. Cancer and Metastasis Reviews, 2014, 33, 353-359.	5.9	26
93	Translational research in neuroendocrine tumors: pitfalls and opportunities. Oncogene, 2017, 36, 1899-1907.	5.9	26
94	Somatostatin Plays a Dual, Stimulatory/Inhibitory Role in the Control of Growth Hormone Secretion by Two Somatotrope Subpopulations from Porcine Pituitary. Journal of Neuroendocrinology, 1997, 9, 841-848.	2.6	25
95	Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 38 and PACAP27 Activate Common and Distinct Intracellular Signaling Pathways to Stimulate Growth Hormone Secretion from Porcine Somatotropes ¹ . Endocrinology, 1998, 139, 5116-5124.	2.8	25
96	Rab18 Is Reduced in Pituitary Tumors Causing Acromegaly and Its Overexpression Reverts Growth Hormone Hypersecretion. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2269-2276.	3.6	25
97	Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug. Journal of Experimental and Clinical Cancer Research, 2021, 40, 382.	8.6	25
98	Resistin Regulates Pituitary Somatotrope Cell Function through the Activation of Multiple Signaling Pathways. Endocrinology, 2009, 150, 4643-4652.	2.8	24
99	Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate, 2017, 77, 1499-1511.	2.3	24
100	Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues — Observations in two patients with acromegaly and severe headache. Growth Hormone and IGF Research, 2015, 25, 262-267.	1.1	23
101	Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. Minerva Endocrinologica, 2019, 44, 109-128.	1.8	23
102	Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: Lessons from human and non-human primate models. Molecular and Cellular Endocrinology, 2018, 463, 4-22.	3.2	22
103	Mediterranean Diet, Glucose Homeostasis, and Inflammasome Genetic Variants: The CORDIOPREV Study. Molecular Nutrition and Food Research, 2018, 62, e1700960.	3.3	22
104	Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA. Journal of Molecular Endocrinology, 2004, 32, 437-448.	2.5	21
105	Ghrelin Induces Growth Hormone (GH) Secretion via Nitric Oxide (NO)/cGMP Signaling. Annals of the New York Academy of Sciences, 2005, 1040, 452-453.	3.8	20
106	A New Generation Somatostatin-Dopamine Analogue Exerts Potent Antitumoral Actions on Pituitary Neuroendocrine Tumor Cells. Neuroendocrinology, 2020, 110, 70-82.	2.5	20
107	Influence of Obesity in the miRNome: miR-4454, a Key Regulator of Insulin Response Via Splicing Modulation in Prostate. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e469-e484. 	3.6	20
108	Subcellular responsiveness of amphibian growth hormone cells after TSH-releasing hormone stimulation. General and Comparative Endocrinology, 1991, 84, 94-103.	1.8	19

JUSTO P CASTAñO

#	Article	IF	CITATIONS
109	Pituitary adenylate cyclase-activating polypeptides 38 and 27 increase cytosolic free Ca2+ concentration in porcine somatotropes through common and distinct mechanisms. Cell Calcium, 1998, 23, 369-378.	2.4	19
110	Growth hormone-releasing factor mobilizes cytosolic free calcium through different mechanisms in two somatotrope subpopulations from porcine pituitary. Cell Calcium, 1998, 23, 207-217.	2.4	19
111	A Modulatory Role for Substance P on the Regulation of Luteinizing Hormone Secretion by Cultured Porcine Gonadotrophs1. Biology of Reproduction, 1998, 58, 678-685.	2.7	19
112	Melanotrope secretory cycle is regulated by physiological inputs via the hypothalamus. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1039-E1046.	3.5	19
113	Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Scientific Reports, 2018, 8, 6173.	3.3	19
114	In1-ghrelin splicing variant is associated with reduced disease-free survival of breast cancer patients and increases malignancy of breast cancer cells lines. Carcinogenesis, 2018, 39, 447-457.	2.8	19
115	Clinical, Cellular, and Molecular Evidence of the Additive Antitumor Effects of Biguanides and Statins in Prostate Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e696-e710.	3.6	19
116	SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1Âsplicing and mTOR/ÂY-catenin pathways imbalances. Journal of Experimental and Clinical Cancer Research, 2022, 41, 39.	8.6	19
117	Peripubertal-onset but not adult-onset obesity increases IGF-I and drives development of lean mass, which may lessen the metabolic impairment in adult obesity. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1151-E1157.	3.5	18
118	El Registro Molecular de Adenomas Hipofisarios (REMAH): una apuesta de futuro de la EndocrinologÃa espaA±ola por la medicina individualizada y la investigación traslacional. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 274-284.	0.8	18
119	Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Annals of the Rheumatic Diseases, 2022, 81, 56-67.	0.9	18
120	Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP27 differentially stimulate growth hormone release and mRNA accumulation in porcine somatotropes. Life Sciences, 1998, 62, 2379-2390.	4.3	17
121	Homologous and Heterologous in Vitro Regulation of Pituitary Receptors for Somatostatin, Growth Hormone (GH)-Releasing Hormone, and Ghrelin in a Nonhuman Primate (Papio anubis). Endocrinology, 2012, 153, 264-272.	2.8	17
122	The expression of the truncated isoform of somatostatin receptor subtype 5 associates with aggressiveness in medullary thyroid carcinoma cells. Endocrine, 2015, 50, 442-452.	2.3	17
123	Telomerase RNA Component Genetic Variants Interact With the Mediterranean Diet Modifying the Inflammatory Status and its Relationship With Aging: CORDIOPREV Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 73, glw194.	3.6	17
124	Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and <scp>IGF</scp> 1. Journal of Cellular and Molecular Medicine, 2017, 21, 1893-1904.	3.6	17
125	Plasma ghrelin Oâ€acyltransferase (GOAT) enzyme levels: A novel nonâ€nvasive diagnosis tool for patients with significant prostate cancer. Journal of Cellular and Molecular Medicine, 2018, 22, 5688-5697.	3.6	17
126	Peptides derived from the extracellular domain of the somatostatin receptor splicing variant SST5TMD4 increase malignancy in multiple cancer cell types. Translational Research, 2019, 211, 147-160.	5.0	17

#	Article	IF	CITATIONS
127	Research progress in the stimulatory inputs regulating growth hormone (GH) secretion. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 132, 141-150.	1.6	16
128	Amphibian Melanotrophs as a Model to Analyze the Secretory Plasticity of Endocrine Cells. General and Comparative Endocrinology, 2002, 126, 4-6.	1.8	16
129	Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1325-E1334.	3.5	16
130	Melatonin Regulates Somatotrope and Lactotrope Function Through Common and Distinct Signaling Pathways in Cultured Primary Pituitary Cells From Female Primates. Endocrinology, 2015, 156, 1100-1110.	2.8	16
131	Oncogenic Role of Secreted Engrailed Homeobox 2 (EN2) in Prostate Cancer. Journal of Clinical Medicine, 2019, 8, 1400.	2.4	16
132	The truncated somatostatin receptor sst5TMD4 stimulates the angiogenic process and is associated to lymphatic metastasis and disease-free survival in breast cancer patients. Oncotarget, 2016, 7, 60110-60122.	1.8	16
133	Differential response of amphibian PRL and TSH pituitary cells to in vitro TRH treatment. General and Comparative Endocrinology, 1992, 88, 178-187.	1.8	15
134	Hormonal storage patterns and morphological heterogeneity of porcine gonadotrope cells during postnatal development. Molecular and Cellular Endocrinology, 1993, 97, 51-59.	3.2	15
135	Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: Putative implications in the postprandial inflammatory response. Molecular Nutrition and Food Research, 2014, 58, 1897-1906.	3.3	15
136	Obestatin Plays an Opposite Role in the Regulation of Pituitary Somatotrope and Corticotrope Function in Female Primates and Male/Female Mice. Endocrinology, 2014, 155, 1407-1417.	2.8	15
137	Cortistatin: A new link between the growth hormone/prolactin axis, stress, and metabolism. Growth Hormone and IGF Research, 2017, 33, 23-27.	1.1	15
138	The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features. Lung Cancer, 2017, 109, 128-136.	2.0	15
139	Somatostatin Stimulates GH Secretion in Two Porcine Somatotrope Subpopulations through a cAMP-Dependent Pathway. Endocrinology, 2002, 143, 889-897.	2.8	15
140	Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Research, 2012, 1450, 40-48.	2.2	14
141	Somatotropinomas, But Not Nonfunctioning Pituitary Adenomas, Maintain a Functional Apoptotic RET/Pit1/ARF/p53 Pathway That Is Blocked by Excess GDNF. Endocrinology, 2014, 155, 4329-4340.	2.8	14
142	Effect of the Tryptophan Hydroxylase Inhibitor Telotristat on Growth and Serotonin Secretion in 2D and 3D Cultured Pancreatic Neuroendocrine Tumor Cells. Neuroendocrinology, 2020, 110, 351-363.	2.5	14
143	A Proposal for Modification of the PSOGI Classification According to the Ki-67 Proliferation Index in Pseudomyxoma Peritonei. Annals of Surgical Oncology, 2022, 29, 126-136.	1.5	14
144	Somatostatin increases growth hormone (GH) secretion in a subpopulation of porcine somatotropes: evidence for functional and morphological heterogeneity among porcine GH-producing cells. Endocrinology, 1996, 137, 129-136.	2.8	14

#	Article	IF	CITATIONS
145	Direct effects of growth hormone (GH)-releasing hexapeptide (GHRP-6) and GH-releasing factor (GRF) on GH secretion from cultured porcine somatotropes. Life Sciences, 1998, 63, 2079-2088.	4.3	13
146	The Molecular Registry of Pituitary Adenomas (REMAH): A bet by Spanish Endocrinology for the future of individualized medicine and translational research. EndocrinologÃa Y Nutrición (English Edition), 2016, 63, 274-284.	0.5	13
147	Corticotrophin-Dependent Cushing Syndrome Due to Sacrococcygeal Teratoma Detected by [18F]Fluorodeoxyglucose Positron Emission Tomography. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3282-3283.	3.6	12
148	Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis, 2014, 35, 2467-2473.	2.8	12
149	Longitudinal analysis of maternal serum Follistatin concentration in normal pregnancy and preeclampsia. Clinical Endocrinology, 2015, 83, 229-235.	2.4	12
150	Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Scientific Reports, 2016, 6, 37992.	3.3	12
151	Metabolic Fingerprint of Acromegaly and its Potential Usefulness in Clinical Practice. Journal of Clinical Medicine, 2019, 8, 1549.	2.4	12
152	Statins Directly Regulate Pituitary Cell Function and Exert Antitumor Effects in Pituitary Tumors. Neuroendocrinology, 2020, 110, 1028-1041.	2.5	12
153	Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test. Scientific Reports, 2016, 6, 31661.	3.3	12
154	Mouse models of endocrine tumors. Journal of Endocrinology, 2019, 240, R73-R96.	2.6	12
155	Differential Expression and Processing of Chromogranin A and Secretogranin II in Relation to the Secretory Status of Endocrine Cells. Endocrinology, 2006, 147, 1408-1418.	2.8	11
156	Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. Journal of Molecular Endocrinology, 2013, 50, 19-29.	2.5	11
157	Desmopressin test in the diagnosis and follow-up of cyclical Cushing's disease. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2014, 61, 69-76.	0.8	11
158	The Pituitary Gland is a Novel Major Site of Action of Metformin in Non-Human Primates: a Potential Path to Expand and Integrate Its Metabolic Actions. Cellular Physiology and Biochemistry, 2018, 49, 1444-1459.	1.6	11
159	Effects of Ketoconazole on ACTH-Producing and Non-ACTH-Producing Neuroendocrine Tumor Cells. Hormones and Cancer, 2019, 10, 107-119.	4.9	10
160	Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells. Antioxidants, 2021, 10, 1348.	5.1	10
161	Reflexión estratégica de la Sociedad Española de EndocrinologÃa y Nutrición sobre el futuro de la especialidad en el periodo 2018-2022. Endocrinologia, Diabetes Y NutriciÓn, 2019, 66, 654-662. 	0.3	10
162	Secretory and Morphological Heterogeneity of Porcine Somatotropes during Postnatal Development. Journal of Neuroendocrinology, 1997, 9, 769-775.	2.6	9

#	Article	IF	CITATIONS
163	The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells. Biochemical Journal, 2012, 443, 387-396.	3.7	9
164	Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice. Endocrinology, 2016, 157, 2810-2823.	2.8	9
165	Quantitative Analysis of Somatostatin and Dopamine Receptors Gene Expression Levels in Non-functioning Pituitary Tumors and Association with Clinical and Molecular Aggressiveness Features. Journal of Clinical Medicine, 2020, 9, 3052.	2.4	9
166	Human pancreatic growth hormone-releasing factor (1–44) stimulates CH cells in an anuran amphibian (Rana perezi). General and Comparative Endocrinology, 1991, 84, 461-469.	1.8	8
167	Secretory Plasticity of Pituitary Cells: A Mechanism of Hormonal Regulation. Archives of Physiology and Biochemistry, 2002, 110, 106-112.	2.1	8
168	Analysis of Rab18 and a New Golgin in the Secretory Pathway. Annals of the New York Academy of Sciences, 2005, 1040, 137-139.	3.8	8
169	Mitochondrial-Driven Ubiquinone Enhances Extracellular Calcium-Dependent Nitric Oxide Production and Reduces Glycochenodeoxycholic Acid-Induced Cell Death in Hepatocytes. Chemical Research in Toxicology, 2009, 22, 1984-1991.	3.3	8
170	Role of Endogenous Cortistatin in the Regulation of Ghrelin System Expression at Pancreatic Level under Normal and Obese Conditions. PLoS ONE, 2013, 8, e57834.	2.5	8
171	Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly. Scientific Reports, 2015, 5, 16298.	3.3	8
172	Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels. Endocrinology, 2015, 156, 1958-1964.	2.8	8
173	Ghrelin-O-Acyltransferase (GOAT) Enzyme as a Novel Potential Biomarker in Gastroenteropancreatic Neuroendocrine Tumors. Clinical and Translational Gastroenterology, 2018, 9, e196.	2.5	8
174	Clinical Utility of Ghrelin-O-Acyltransferase (GOAT) Enzyme as a Diagnostic Tool and Potential Therapeutic Target in Prostate Cancer. Journal of Clinical Medicine, 2019, 8, 2056.	2.4	8
175	A supervised machine learning-based methodology for analyzing dysregulation in splicing machinery: An application in cancer diagnosis. Artificial Intelligence in Medicine, 2020, 108, 101950.	6.5	8
176	Amphibian Melanotrope Subpopulations Respond Differentially to Hypothalamic Secreto-Inhibitors. Neuroendocrinology, 2001, 73, 426-434.	2.5	7
177	Increased expression of α- and β-globin mRNAs at the pituitary following exposure to estrogen during the critical period of neonatal sex differentiation in the rat. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 33-43.	2.5	7
178	RT-PCR analysis of the expression of POMC and its processing enzyme PC1 in amphibian melanotropes. General and Comparative Endocrinology, 2006, 147, 222-230.	1.8	7
179	Self-limited acute hepatotoxicity caused by pegvisomant. Pituitary, 2011, 14, 371-376.	2.9	7
180	Endogenous Somatostatin Is Critical in Regulating the Acute Effects of l-Arginine on Growth Hormone and Insulin Release in Mice. Endocrinology, 2013, 154, 2393-2398.	2.8	7

#	Article	IF	CITATIONS
181	Dietary Intervention Modulates the Expression of Splicing Machinery in Cardiovascular Patients at High Risk of Type 2 Diabetes Development: From the CORDIOPREV Study. Nutrients, 2020, 12, 3528.	4.1	7
182	Serum angiopoietin-like 3 levels are elevated in obese non diabetic men but are unaffected during an oral glucose tolerance test. Scientific Reports, 2020, 10, 21118.	3.3	7
183	Dynamic fluctuations in the secretory activity of individual lactotropes as demonstrated by a modified sequential plaque assay. Endocrinology, 1994, 135, 1747-1752.	2.8	7
184	Obesity Alters Gene Expression for GH/IGF-I Axis in Mouse Mammary Fat Pads: Differential Role of Cortistatin and Somatostatin. PLoS ONE, 2015, 10, e0120955.	2.5	7
185	Sarcopenia and Ghrelin System in the Clinical Outcome and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers, 2022, 14, 111.	3.7	7
186	Different exocytotic morphology in amphibian prolactin and growth hormone cells stimulated In vitro with TRH. Tissue and Cell, 1993, 25, 165-172.	2.2	6
187	Role of Ca2+ in the secretory and biosynthetic response of porcine gonadotropes to substance P and gonadotropin-releasing hormone. Regulatory Peptides, 2003, 116, 43-52.	1.9	6
188	Familial Isolated Pituitary Adenoma Caused by a Aip Gene Mutation not Described Before in a Family Context. Endocrine Pathology, 2013, 24, 234-238.	9.0	6
189	Models of GH deficiency in animal studies. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 693-704.	4.7	6
190	Dysregulation of Components of the Inflammasome Machinery After Bariatric Surgery: Novel Targets for a Chronic Disease. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4917-e4934.	3.6	6
191	Epigenetic and postâ€ŧranscriptional regulation of somatostatin receptor subtype 5 (SST ₅) in pituitary and pancreatic neuroendocrine tumors. Molecular Oncology, 2022, 16, 764-779.	4.6	6
192	Differences in Second Messengers (Ca2+ and cAMP) Suggest a Dual Role for SRIF in Regulating GH Release from Porcine Somatotropes. Annals of the New York Academy of Sciences, 1998, 839, 375-377.	3.8	5
193	Foreword. Molecular and Cellular Endocrinology, 2008, 286, 1-2.	3.2	5
194	Discrimination between alternate membrane protein topologies in living cells using GFP/YFP tagging and pH exchange. Cellular and Molecular Life Sciences, 2010, 67, 3345-3354.	5.4	5
195	Leptin and Fasting Regulate Rat Gastric Glucose-Regulated Protein 58. International Journal of Peptides, 2011, 2011, 1-11.	0.7	5
196	GHRH., 2013,, 784-791.		5
197	Desmopressin test in the diagnosis and follow-up of cyclical Cushing's disease. EndocrinologÃa Y Nutrición (English Edition), 2014, 61, 69-76.	0.5	5
198	Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Research, 2016, 18, 29.	5.0	5

#	Article	IF	CITATIONS
199	Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. Journal of Clinical Medicine, 2020, 9, 1703.	2.4	5
200	In1-Chrelin Splicing Variant as a Key Element in the Pathophysiological Association Between Obesity and Prostate Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4956-e4968.	3.6	5
201	Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. International Journal of Molecular Sciences, 2022, 23, 1143.	4.1	5
202	Clinical Efficacy of Two Different Methods to Initiate Sensor-Augmented Insulin Pumps: A Randomized Controlled Trial. Journal of Diabetes Research, 2016, 2016, 1-6.	2.3	4
203	Antagonists of Growth Hormone-Releasing Hormone Inhibit the Growth of Pituitary Adenoma Cells by Hampering Oncogenic Pathways and Promoting Apoptotic Signaling. Cancers, 2021, 13, 3950.	3.7	4
204	Multiple Measurements of Gene Expression in Single, Living Cells Enable Molecular Analysis of Endocrine Cell Heterogeneitya. Annals of the New York Academy of Sciences, 1998, 839, 336-340.	3.8	3
205	Growth Hormone-Releasing Hormone. , 2006, , 663-671.		3
206	Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin. Molecular and Cellular Endocrinology, 2016, 434, 14-24.	3.2	3
207	Maternal Serum Angiopoietin-Like 3 Levels in Healthy and Mild Preeclamptic Pregnant Women. Frontiers in Endocrinology, 2021, 12, 670357.	3.5	3
208	A microbiotaâ€based predictive model for type 2 diabetes remission induced by dietary intervention: From the CORDIOPREV study. Clinical and Translational Medicine, 2021, 11, e326.	4.0	3
209	Integrative clinical, radiological and molecular analysis for predicting remission and recurrence of Cushing's disease. Journal of Clinical Endocrinology and Metabolism, 2022, , .	3.6	3
210	Identification of Novel Genes Involved in the Plasticity of Pituitary Melanotropes in Amphibians. Annals of the New York Academy of Sciences, 2009, 1163, 233-240.	3.8	2
211	Effects of Growth Hormone-Releasing Factor and Somatostatin On Intracellular Calcium and Growth Hormone Release From the Porcine Somatotrope. Animal Biology, 1994, 45, 201-203.	0.4	1
212	In Search of a Secretory Cycle. Animal Biology, 1994, 45, 25-32.	0.4	1
213	Avances en biologÃa molecular en patologÃa neuroendocrina. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2010, 57, 2-6.	0.8	1
214	Porcine sst1 can physically interact with other somatostatin receptors, and its expression is regulated by metabolic/inflammatory sensors. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E483-E493.	3.5	1
215	ASO Visual Abstract: A Proposal for Modification of PSOGI Classification According to Ki-67 Proliferation Index in Pseudomyxoma peritonei. Annals of Surgical Oncology, 2021, 28, 529-530.	1.5	1
216	Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1

#	Article	IF	CITATIONS
217	FRI0429â€Dysregulation of the splicing machinery in leukocytes from ankylosing spondylitis patients is associated to disease pathogenesis. , 2017, , .		0
218	A Supervised Methodology for Analyzing Dysregulation in Splicing Machinery: An Application in Cancer Diagnosis. , 2019, , .		0
219	THU0060â€Alterations of splicing in leukocytes from rheumatoid arthritis patients and its influence on the autoimmune, inflammatory and atherothrombotic profile of the disease. potential role of u4atac. , 2018, , .		0