Zhi-Min Zong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3901153/publications.pdf

Version: 2024-02-01

224 papers 5,510 citations

76196 40 h-index 57 g-index

224 all docs

224
docs citations

times ranked

224

2528 citing authors

#	Article	IF	CITATIONS
1	Investigation on the structural features of Hecaogou subbituminous coal and its residues by multiple technical strategies. Fuel, 2022, 309, 122111.	3.4	8
2	Overview: Effective Separation of Oxygen-, Nitrogen-, and Sulfur-Containing Aromatics in High-Temperature Coal Tar by Ionic Liquids and Deep Eutectic Solvents: Experimental and Computational. Industrial & Engineering Chemistry Research, 2022, 61, 4481-4492.	1.8	8
3	Advances in mild degradation and directional upgrading of lignites: From feature identification to value-added utilization. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105477.	2.6	17
4	Promotional effect of metallic Co and Fe on Ni-based catalysts for p-cresol deoxygenation. Fuel, 2022, 321, 124033.	3.4	3
5	Effective hydroconversion of heteroatom-containing organic species from the extraction of low-temperature coal tar to cycloalkanes over a Y/Beta composite zeolite supported nickel nanoparticles. Fuel, 2022, 321, 124062.	3.4	14
6	Priority Separation of Phenols with Deep Eutectic Solvents from an Acetonitrile-Extractable Portion of a Shale Oil: Experimental and Computational. Energy & Energy & 2022, 36, 5657-5665.	2.5	3
7	Comprehensive investigation of the mechanisms for pyrolyzing macromolecular networks in Hecaogou subbituminous coal by comparing the ethanolysis and flash pyrolysis. Fuel, 2022, 324, 124619.	3.4	2
8	Catalytic o-methylation of phenols and its application in converting crude phenols in a low-temperature coal tar to mesitol and durenol. Fuel, 2021, 288, 119681.	3.4	5
9	Green and effective catalytic hydroconversion of an extractable portion from an oil sludge to clean jet and diesel fuels over a mesoporous Y zeolite-supported nickel catalyst. Fuel, 2021, 287, 119396.	3.4	14
10	Effective Separation of Condensed Arenes from High-Temperature Coal Tar and Insight into Related Intermolecular Interactions. Energy & Samp; Fuels, 2021, 35, 4267-4272.	2.5	6
11	Effect of isopropanolysis on the structure variation and pyrolysis behaviors of Wucaiwan lignite. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105012.	2.6	8
12	Value-added utilization of high-temperature coal tar: A review. Fuel, 2021, 292, 119954.	3.4	48
13	Solvent Effect on the Hydroconversion of Lignin-Related Model Compounds over MoO ₃ . Energy & Samp; Fuels, 2021, 35, 12142-12150.	2.5	5
14	Preparation of hierarchical porous carbons from a coal tar pitch modified by fluid catalytic cracking oil for a high-performance supercapacitor. Journal of Materials Science, 2021, 56, 16591-16601.	1.7	8
15	Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y supported nickel nanoparticles. Renewable Energy, 2021, 173, 876-885.	4.3	21
16	Insight into molecular interactions between condensed aromatics in high-temperature coal tar and organic solvents by combining experimental, density functional theory, and molecular dynamics. Fuel, 2021, 300, 120942.	3.4	9
17	Catalytic ethanolysis of Dahuangshan lignite and directional upgrading of two derived soluble mixtures. Fuel, 2021, 303, 120939.	3.4	14
18	Selective enrichment of carbazole from an anthracene slag by extraction: Experiment and simulation. Journal of Molecular Liquids, 2021, 341, 117382.	2.3	3

#	Article	IF	Citations
19	Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Hecaogou subbituminous coal to ultra-clean liquid fuel over hierarchical porous zeolite Y supported Ni–Co nanoparticles. Journal of the Energy Institute, 2021, 99, 88-96.	2.7	14
20	Investigation on the composition of soluble portions from the extraction residue of Hanglaiwan subbituminous coal by thermal dissolution and alkanolyses. Fuel, 2021, 306, 121747.	3.4	6
21	Characterization of Oxygen-Containing Aromatics in a Low-Temperature Coal Tar. Energy & C	2.5	8
22	Selective organic phase hydrodeoxygenation of typical phenolic monomers and two lignin oils over highly active Pd/Hl^2 catalyst for high-grade bio-fuel production. Journal of Environmental Chemical Engineering, 2021, 9, 106599.	3.3	7
23	Study on the oxygen forms in soluble portions from thermal dissolution and alkanolyses of the extraction residue from Baiyinhua lignite. Fuel, 2020, 260, 116301.	3.4	12
24	Extraction and sequential elution of a heavy oil from direct coal liquefaction. Fuel, 2020, 260, 116319.	3.4	6
25	Pretreatment with Trichoderma sp. AH enhances conversion and specificity of wheat straw in supercritical methanolysis. Biomass and Bioenergy, 2020, 135, 105149.	2.9	4
26	Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C. Catalysis Letters, 2020, 150, 178-184.	1.4	9
27	Enhanced hydrogenation of aromatic rings and hydrocracking of >CarO bridged bonds in the extraction residue from Piliqing subbituminous coal over a magnetic difunctional solid superbase. Journal of Analytical and Applied Pyrolysis, 2020, 146, 104695.	2.6	6
28	Catalytic Hydroconversion of Ethanol-Soluble Portion from the Ethanolysis of Hecaogou Subbituminous Coal Extraction Residue to Clean Liquid Fuel over a Zeolite Y/ZSM-5 Composite Zeolite-Supported Nickel Catalyst. Energy & Samp; Fuels, 2020, 34, 4799-4807.	2.5	22
29	Synthesis of poly(phenylene methylenes) via a AlCl 3 â€mediated Friedel–Craft alkylation of multiâ€substituted benzyl bromide with benzene. Journal of Applied Polymer Science, 2020, 137, 48779.	1.3	3
30	Benzenecarboxylic acid production by oxidation of Shenmu char powders with aqueous sodium hypochlorite. Fuel, 2020, 278, 118194.	3.4	6
31	Catalytic hydroconversion of derivates from Naomaohu lignite over an active and recyclable bimetallic catalyst. Fuel Processing Technology, 2020, 204, 106388.	3.7	12
32	Investigation on the Structural Features of Hanglaiwan Subbituminous Coal and Its Residues from Solvent Extraction and Thermal Dissolution. Energy & Energy & 15870-15877.	2.5	8
33	Thermal treatment of Shengli lignite and subsequent oxidation. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104810.	2.6	3
34	Selective hydrogenolysis of C O bonds in benzyloxybenzene and dealkaline lignin to valuable aromatics over Ni/TiN. Fuel Processing Technology, 2020, 209, 106523.	3.7	17
35	Production of Benzenecarboxylic Acids from Geting Bituminous Coal through Oxidation with NaOCl Enhanced by Pretreatment with H ₂ O ₂ . ChemistrySelect, 2020, 5, 8380-8385.	0.7	4
36	Effective Separation and Purification of Nitrogen-Containing Aromatics from the Light Portion of a High-Temperature Coal Tar Using Choline Chloride and Malonic Acid: Experimental and Molecular Dynamics Simulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9464-9471.	3.2	21

#	Article	IF	CITATIONS
37	Catalytic Hydroconversion of Runbei Lignite over a Highly Active Solid Superacid. ChemistrySelect, 2020, 5, 6646-6651.	0.7	2
38	Observing the structural variation of Dahuangshan lignite and four derived residues by non-destructive techniques and flash pyrolysis. Fuel, 2020, 269, 117335.	3.4	11
39	Catalytic Hydroconversion of a High-Temperature Coal Tar over Two Attapulgite Powder-Supported Nickel Catalysts. Energy & Dels, 2020, 34, 1288-1296.	2.5	6
40	Investigation on Naphthalene and Its Derivativesâ€Based Microporous Organic Hyperâ€Crossâ€Linked Polymers via Different Methodologies. Macromolecular Chemistry and Physics, 2020, 221, 1900302.	1.1	6
41	Separation of arenols from a low-temperature coal tar by liquid-liquid extraction. Korean Journal of Chemical Engineering, 2020, 37, 835-838.	1.2	8
42	Catalytic hydroconversion of soluble portion in the extraction from Hecaogou subbituminous coal to clean liquid fuel over a Y/ZSM-5 composite zeolite-supported nickel catalyst. Fuel, 2020, 269, 117326.	3.4	26
43	Investigation on the structural characteristics of the residues from extraction and oxidation of a sawdust. Fuel, 2020, 273, 117091.	3.4	5
44	Occurrence and distribution of biomarkers in Baiyinhua lignite. Fuel, 2020, 271, 117525.	3.4	4
45	Two-Step Catalytic Degradations of Dahuangshan Lignite and Directional Upgrading of the Resulting Petroleum Ether-Extractable Portions. Energy & Energy & 2020, 34, 5457-5465.	2.5	10
46	Oneâ€pot Facile Synthesis of Multifunctional Conjugated Microporous Polymers via Suzukiâ€Miyaura Coupling Reaction. ChemistrySelect, 2020, 5, 1410-1415.	0.7	5
47	Clean and effective catalytic hydrolysis of bagasse waste to small-molecular compounds over a hydrothermally stable Ru/La(OH)3. Journal of Cleaner Production, 2019, 238, 117909.	4.6	5
48	Changes in oxygen functionality of soluble portions and residues from bagasse sub- and supercritical alkanolyses: Identification of complex structural fragments. Biomass and Bioenergy, 2019, 127, 105288.	2.9	3
49	Application of a Dual-Solvent Method in Separating Paraffin from a Shale Oil: A Combined Experimental and DFT Study. Industrial & Experimental and DFT Study. Industrial & Experimental & Experimental and DFT Study. Industrial & Experimental & Expe	1.8	12
50	Insight into the Compositions of the Soluble/Insolube Portions from the Acid/Base Extraction of Five Fractions Distilled from a High Temperature Coal Tar. Energy & Energy & 2019, 33, 10099-10107.	2.5	20
51	Selective catalytic hydroconversion of bagasse-derived bio-oil to value-added cyclanols in water: Through insight into the structural features of bagasse. Fuel Processing Technology, 2019, 185, 18-25.	3.7	18
52	Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Dahuangshan lignite to clean liquid fuel over a mordenite supported nickel catalyst. Journal of Analytical and Applied Pyrolysis, 2019, 139, 13-21.	2.6	35
53	Identification of oxygen-containing aromatics in soluble portions from thermal dissolution and alkanolyses of Baiyinhua lignite. Fuel Processing Technology, 2019, 186, 149-155.	3.7	13
54	Identification of organooxygen compounds in the methanol-soluble portion from the methanolysis of pretreated rice straw with Trichoderma sp. AH. Fuel, 2019, 252, 792-798.	3.4	3

#	Article	IF	Citations
55	Insight into molecular compositions of soluble species from sequential thermal dissolution of Liuhuanggou bituminous coal and its extraction residue. Fuel, 2019, 253, 762-771.	3.4	17
56	Structural characterization of Baiyinhua lignite via direct and thermal decomposition methods. Fuel, 2019, 253, 1042-1047.	3.4	12
57	Selective and effective separation of five condensed arenes from a high-temperature coal tar by extraction combined with high pressure preparative chromatography. Journal of Chromatography A, 2019, 1603, 160-164.	1.8	19
58	Changes in oxygen-functional moieties during sequential thermal dissolution and methanolysis of the extraction residue from Zhaotong lignite. Journal of Analytical and Applied Pyrolysis, 2019, 139, 40-47.	2.6	11
59	Catalytic hydroconversion of Yinggemajianfeng lignite over difunctional Ni-Mg2Si/γ-Al2O3. Fuel, 2019, 249, 496-502.	3.4	9
60	Compositional features of the extracts from the methanolysis of Xilingol No. 6 lignite. Fuel, 2019, 246, 516-520.	3.4	8
61	Insights into Physicochemical Changes of Yinggemajianfeng Lignite in Co-Solvents of Ionic Liquids and Methanol. Energy & Samp; Fuels, 2019, 33, 2867-2871.	2.5	4
62	Production of benzenecarboxylic acids from two typical Chinese subbituminous coals by oxidation in aqueous sodium hypochlorite solution and insights into structural characteristics. Fuel, 2019, 247, 386-394.	3.4	14
63	Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal. Fuel, 2019, 242, 819-827.	3.4	23
64	Comparative studies on the structural features of soluble portions from thermal dissolution/methanolysis and catalytic hydroconversion of an extraction residue from Heishan lignite. Fuel, 2019, 241, 1138-1144.	3.4	9
65	Conversion of Organic Matter in Coal by Photocatalytic Oxidation with H ₂ O ₂ over SFC/TiO ₂ in Isolated Oxygen System. Journal of Chemistry, 2019, 2019, 1-12.	0.9	0
66	Catalytic hydroconversion of Yiwu lignite over solid superacid and solid superbase. Fuel, 2019, 238, 473-482.	3.4	15
67	Optimization of Ultrasonic-Microwave Assisted Extraction and Hepatoprotective Activities of Polysaccharides from Trametes orientalis. Molecules, 2019, 24, 147.	1.7	22
68	A three-step dissociation method for converting Xiaolongtan lignite into soluble organic compounds: Insights into chemicals, geochemical clues, and structural characteristics. Fuel, 2019, 242, 883-892.	3.4	8
69	An Effective Approach for Separating Carbazole and Its Derivates from Coal-Tar-Derived Anthracene Oil Using Ionic Liquids. Energy & Fuels, 2019, 33, 513-522.	2.5	22
70	Temperature-controlled hydrogenation of anthracene over nickel nanoparticles supported on attapulgite powder. Fuel, 2018, 223, 222-229.	3.4	42
71	A highly active bifunctional solid acid for di(1-naphthyl)methane hydroconversion. Fuel, 2018, 220, 101-108.	3.4	7
72	Oxidative degradation of the extraction residue from a sawdust. Fuel, 2018, 212, 586-592.	3.4	6

#	Article	IF	CITATIONS
73	Selective production and characterization of aromatic carboxylic acids from Xianfeng lignite-derived residue by mild oxidation in aqueous H2O2 solution. Fuel Processing Technology, 2018, 181, 91-96.	3.7	24
74	î±â€Fe ₂ O ₃ /Attapulgiteâ€mediated reaction of benzyl chloride: Synthesis of poly(phenylene methylene). Journal of Polymer Science Part A, 2018, 56, 2280-2285.	2.5	6
75	MOFs-derived N-doped carbon matrix superacid-catalyzed hydrocracking of a residue from thermal dissolution of Hefeng subbituminous coal. Fuel Processing Technology, 2018, 180, 180-188.	3.7	8
76	Solvent-controlled selective hydrodeoxygenation of bio-derived guaiacol to arenes or phenols over a biochar supported Co-doped MoO2 catalyst. Fuel Processing Technology, 2018, 179, 114-123.	3.7	67
77	A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials, 2018, 184, 20-30.	5.7	40
78	Characterization of nitrogen and sulfur-containing species in Zhaotong lignite and its extracts from ultrasonic extraction. Fuel, 2018, 219, 417-425.	3.4	26
79	Enhanced hydrocracking Car-Calk bridged bonds in the extraction residue from Piliqing subbituminous coal over a recyclable and active magnetic solid superacid. Fuel Processing Technology, 2018, 176, 316-324.	3.7	10
80	Catalytic hydroconversion of the extraction residue from Naomaohu lignite over an active and separable magnetic solid superbase. Fuel, 2018, 226, 410-416.	3.4	17
81	Sequential extraction of oak wood sawdust and oxidative degradation of the extraction residue. Fuel Processing Technology, 2018, 179, 167-174.	3.7	5
82	Effects of reaction conditions on catalytic hydroconversion of phenethoxybenzene over bifunctional Ni/H \hat{l}^2 . Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2228.	0.8	3
83	Rapid analysis of carboxylic acids and esters with a direct analysis in real time ion source. Rapid Communications in Mass Spectrometry, 2018, 32, 1521-1528.	0.7	2
84	Solubility of a Russia vacuum residue and group composition of the soluble fractions in different solvents. Petroleum Science and Technology, 2018, 36, 1427-1431.	0.7	0
85	Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A. Fuel Processing Technology, 2018, 177, 345-352.	3.7	19
86	Investigation on the structural feature of Shengli lignite. International Journal of Mining Science and Technology, 2018, 28, 335-342.	4.6	16
87	Sweet sorghum stalk liquefaction in supercritical methanol: Effects of operating conditions on product yields and molecular composition of soluble fraction. Fuel Processing Technology, 2017, 155, 42-50.	3.7	33
88	Application of mass spectrometry in the characterization of chemicals in coalâ€derived liquids. Mass Spectrometry Reviews, 2017, 36, 543-579.	2.8	39
89	Ameliorative effect of Trametes orientalis polysaccharide against immunosuppression and oxidative stress in cyclophosphamide-treated mice. International Journal of Biological Macromolecules, 2017, 95, 1216-1222.	3.6	50
90	Two-step depolymerization of Zhaotong lignite in ethanol. Fuel, 2017, 196, 391-397.	3.4	22

#	Article	IF	CITATIONS
91	Composition and structural characteristics of nitrogen-containing species in the soluble organic species of Xianfeng lignite. Journal of Fuel Chemistry and Technology, 2017, 45, 385-393.	0.9	4
92	Highly selective catalytic hydroconversion of benzyloxybenzene to bicyclic cyclanes over bifunctional nickel catalysts. Catalysis Communications, 2017, 98, 38-42.	1.6	28
93	Catalytic hydroconversion of lignite-related model compounds over difunctional Ni-Mg2Si/γ-Al2O3. Fuel, 2017, 200, 208-217.	3.4	20
94	Difunctional nickel/microfiber attapulgite modified with an acidic ionic liquid for catalytic hydroconversion of lignite-related model compounds. Fuel, 2017, 204, 236-242.	3.4	27
95	Improvement of organonitrogen compounds in methanol-soluble portion from supercritical methanolysis of pretreated rice straw with Trichoderma sp. AH. Fuel, 2017, 205, 100-108.	3.4	4
96	A recyclable and highly active magnetic solid superbase for hydrocracking C O bridged bonds in sawdust. Fuel Processing Technology, 2017, 159, 396-403.	3.7	14
97	An acidic ionic liquid modified microfiber attapulgite-supported nickel for catalytic hydroconversion of $\hat{l}\pm,\hat{l}\%$ -diarylalkanes. Fuel Processing Technology, 2017, 161, 85-94.	3.7	9
98	Extraction and thermal dissolution of Piliqing subbituminous coal. Fuel, 2017, 200, 282-289.	3.4	34
99	Comparison of three methods for extracting Liuhuanggou bituminous coal. Fuel, 2017, 210, 290-297.	3.4	20
100	Thermal oxidation stability of polyâ€ <i>α</i> â€olefin lubricating oil. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 813-817.	0.8	7
101	Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite. Fuel Processing Technology, 2017, 167, 425-430.	3.7	28
102	Effect of Ethanolysis on the Structure and Pyrolytic Reactivity of Zhaotong Lignite. Energy &	2.5	9
103	Effects of hydrogen and FeNi–S/γ-Al 2 O 3 on the hydroconversion of extraction residue from Geting bituminous coal in cyclohexane. Fuel Processing Technology, 2016, 152, 310-315.	3.7	6
104	Removal of hexavalent chromium from aqueous solution by calcined Zn/Al-LDHs. Water Science and Technology, 2016, 74, 229-235.	1.2	9
105	Insight into the Chemical Complexity of Soluble Portions from Cornstalk Methanolysis. Energy & Soluble Portions from Cornstalk Methanolysis.	2.5	12
106	Characterization of the Oxygenated Chemicals Produced from Supercritical Methanolysis of Modified Lignites. Energy & Samp; Fuels, 2016, 30, 2636-2646.	2.5	22
107	Characterization of Oxygenates in Zhundong Subbituminous Coal by Gas Chromatography/Mass Spectrometry. Analytical Letters, 2016, 49, 1359-1365.	1.0	4
108	A highly active solid acid for specifically catalyzing di(1-naphthyl)methane hydrocracking in cyclohexane. Fuel Processing Technology, 2016, 142, 258-263.	3.7	19

#	Article	IF	Citations
109	Investigation on the structural features of Zhundong subbituminous coal through ruthenium ion-catalyzed oxidation. RSC Advances, 2016, 6, 11952-11958.	1.7	12
110	Supercritical methanolysis of rice straw pretreated with Trichoderma sp. AH. Fuel Processing Technology, 2016, 154, 91-95.	3.7	8
111	Characterization of soluble portions from thermal dissolution of Zhaotong lignite in cyclohexane and methanol. Fuel Processing Technology, 2016, 151, 131-138.	3.7	23
112	Identification of organic nitrogen compounds in methanol-soluble portion from sweet sorghum stalk methanolysis. Fuel Processing Technology, 2016, 152, 406-412.	3.7	6
113	Characterization of condensed aromatics and heteroatomic species in Yanshan petroleum coke through ruthenium ion-catalyzed oxidation using three mass spectrometers. RSC Advances, 2016, 6, 61758-61770.	1.7	9
114	Compositional features of extracts from Shenmu char powder. Journal of Fuel Chemistry and Technology, 2016, 44, 1-6.	0.9	7
115	Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis. Fuel Processing Technology, 2016, 144, 248-254.	3.7	50
116	Characterization of nitrogen- and oxygen-containing species in methanol-extractable portion from Xinghe lignite. Fuel Processing Technology, 2016, 142, 167-173.	3.7	25
117	Hydrocracking of benzyloxybenzene as a lignite-related model compound over a novel solid acid. Fuel Processing Technology, 2016, 146, 110-115.	3.7	19
118	Characterization of heteroatom-containing species in the soluble portion from the ethanolysis of the extraction residue from Xinghe lignite by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2016, 173, 222-229.	3.4	18
119	Effects of sequential extraction and thermal dissolution on the structure and composition of Buliangou subbituminous coal. Fuel Processing Technology, 2016, 148, 324-331.	3.7	34
120	Insight into the chemical complexity of ethanolysis products from extraction residue of Zhaotong lignite. Fuel, 2016, 174, 287-295.	3.4	14
121	Catalytic hydroconversion of methanol-soluble portion from Xiaolongtan lignite over difunctional Ni/Z5A. Fuel Processing Technology, 2016, 148, 146-154.	3.7	32
122	Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review. Applied Energy, 2016, 170, 415-436.	5.1	129
123	Identification of organonitrogen and organooxygen compounds in the extraction residue from Buliangou subbituminous coal by FTICRMS. Fuel, 2016, 171, 151-158.	3.4	27
124	Sequential Extraction and Thermal Dissolution of Baiyinhua Lignite in Isometric CS ₂ /Acetone and Toluene/Methanol Binary Solvents. Energy & Energy	2.5	37
125	A highly active Ni/mesoporous attapulgite for hydrocracking CO bonds in rice straw. Fuel Processing Technology, 2015, 131, 376-381.	3.7	25
126	Characterization of bio-oils from the alkanolyses of sweet sorghum stalk by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2015, 160, 596-604.	3.4	30

#	Article	IF	CITATIONS
127	Catalytic hydroconversion of Geting bituminous coal over FeNi–S∫γ-Al2O3. Fuel Processing Technology, 2015, 133, 195-201.	3.7	29
128	Structural Characterization of Typical Organic Species in Jincheng No. 15 Anthracite. Energy & Species Fuels, 2015, 29, 595-601.	2.5	53
129	Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu–Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel Processing Technology, 2015, 132, 91-98.	3.7	37
130	Characterization of Volatiles in Coal Tar Pitch by Gas Chromatography/Mass Spectrometry and Atmospheric Pressure Solid Analysis Probe/Time of Flight-Mass Spectrometry. Analytical Letters, 2015, 48, 955-965.	1.0	6
131	Investigation on compositional and structural features of Xianfeng lignite through sequential thermal dissolution. Fuel Processing Technology, 2015, 138, 125-132.	3.7	40
132	Analysis of extractable basic nitrogen compounds in Buliangou subbituminous coal by positive-ion ESI FT-ICR MS. Fuel, 2015, 159, 385-391.	3.4	35
133	Identification of basic nitrogen compounds in ethanol-soluble portion from Zhaotong lignite ethanolysis by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2015, 141, 268-274.	3.4	43
134	Mild oxidation of Xiaolongtan lignite in aqueous hydrogen peroxide–acetic anhydride. Fuel, 2015, 142, 268-273.	3.4	47
135	Enrichment and identification of cyclized hopanoids from Shengli lignite. Fuel Processing Technology, 2015, 134, 399-403.	3.7	15
136	Sequential extraction and thermal dissolution of Shengli lignite. Fuel Processing Technology, 2015, 135, 20-24.	3.7	31
137	Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates. RSC Advances, 2015, 5, 45718-45724.	1.7	23
138	Oxidation of Shenmu char powder with aqueous hydrogen peroxide–acetic anhydride. Fuel Processing Technology, 2015, 136, 56-63.	3.7	12
139	Insight into the structural features of Zhaotong lignite using multiple techniques. Fuel, 2015, 153, 176-182.	3.4	188
140	Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries. Fuel Processing Technology, 2015, 136, 8-16.	3.7	25
141	Characterization of Extracts from Geting Bituminous Coal. Analytical Letters, 2015, 48, 1494-1501.	1.0	7
142	Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars. Fuel Processing Technology, 2015, 134, 39-45.	3.7	30
143	Poplar Liquefaction in Water/Methanol Cosolvents. Energy & Description of the Poplar Liquefaction in Water/Methanol Cosolvents.	2.5	24
144	Advances in Lignite Extraction and Conversion under Mild Conditions. Energy & Energy	2.5	83

#	Article	IF	Citations
145	Sulfur-containing species in the extraction residue from Xianfeng lignite characterized by X-ray photoelectron spectrometry and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. RSC Advances, 2015, 5, 7125-7130.	1.7	32
146	Sequential extraction and characterization of liquefaction residue from Shenmu–Fugu subbituminous coal. Fuel Processing Technology, 2015, 136, 1-7.	3.7	30
147	Analysis of the Products from the Oxidation of Geting Bituminous Coal by Atmospheric Pressure Photoionization–Mass Spectrometry. Analytical Letters, 2014, 47, 958-969.	1.0	9
148	Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Processing Technology, 2014, 117, 8-16.	3.7	41
149	Isolation and Identification of Two Novel Condensed Aromatic Lactones from Zhundong Subbituminous Coal. Energy & Dels, 2014, 28, 7394-7397.	2.5	6
150	Enrichment and Identification of Arylhopanes from Shengli Lignite. Energy &	2.5	26
151	Characterization of Oxygen-Containing Species in Methanolysis Products of the Extraction Residue from Xianfeng Lignite with Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Specific Specif	2.5	69
152	Characterization of acidic species in ethanol-soluble portion from Zhaotong lignite ethanolysis by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel Processing Technology, 2014, 128, 297-302.	3.7	50
153	Isolation and Identification of 3-Ethyl-8-methyl-2,3-dihydro-1 <i>H</i> -cyclopenta[<i>a</i>]chrysene from Shengli Lignite. Energy & Description (1988) amp; Fuels, 2014, 28, 6694-6697.	2.5	26
154	Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds. Fuel, 2014, 117, 556-563.	3.4	39
155	Deep hydrogenation of coal tar over a Ni/ZSM-5 catalyst. RSC Advances, 2014, 4, 17105.	1.7	45
156	Cornstalk liquefaction in methanol/water mixed solvents. Fuel Processing Technology, 2014, 117, 1-7.	3.7	41
157	Analysis of some coal-related model compounds and coal derivates with atmospheric solids analysis probe mass spectrometer. Fuel, 2014, 128, 302-313.	3.4	16
158	Alkanolysis simulation of lignite-related model compounds using density functional theory. Fuel, 2014, 120, 158-162.	3.4	21
159	Catalytic hydroconversion of extraction residue from Shengli lignite over Fe–S/ZSM-5. Fuel Processing Technology, 2014, 126, 131-137.	3.7	25
160	Sequential oxidation of Jincheng No. 15 anthracite with aqueous sodium hypochlorite. Fuel Processing Technology, 2014, 125, 182-189.	3.7	44
161	Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation. Fuel Processing Technology, 2014, 126, 199-206.	3.7	49
162	Insight into the structural features of macromolecular aromatic species in Huolinguole lignite through ruthenium ion-catalyzed oxidation. Fuel, 2014, 128, 231-239.	3.4	56

#	Article	ΙF	Citations
163	Characterization of Zhundong subbituminous coal by time-of-flight mass spectrometry equipped with atmospheric pressure photoionization ion source. Fuel Processing Technology, 2014, 117, 60-65.	3.7	34
164	Mechanical, morphological, and thermal properties of (thermoplastic polyurethane)/(chlorinated) Tj ETQq0 0 0	rgBT_/Over	·lock 10 Tf 50
165	A Highly Active Ni/ZSMâ€5 Catalyst for Complete Hydrogenation of Polymethylbenzenes. ChemCatChem, 2013, 5, 3543-3547.	1.8	45
166	Mild oxidation of Jincheng NO. 15 anthracite. Journal of Fuel Chemistry and Technology, 2013, 41, 819-825.	0.9	13
167	Application of gas chromatography/mass spectrometry in studies on separation and identification of organic species in coals. Fuel, 2013, 109, 28-32.	3.4	74
168	Oxidation of Shengli lignite with aqueous sodium hypochlorite promoted by pretreatment with aqueous hydrogen peroxide. Fuel, 2013, 111, 211-215.	3.4	74
169	Investigation on structural features of Shengli lignite through oxidation under mild conditions. Fuel, 2013, 109, 316-324.	3.4	106
170	Synergic effect of methanol and water on pine liquefaction. Bioresource Technology, 2013, 142, 504-509.	4.8	37
171	Application of supported metallic catalysts in catalytic hydrogenation of arenes. RSC Advances, 2013, 3, 14219.	1.7	85
172	Characterizations of the Extracts from Geting Bituminous Coal by Spectrometries. Energy & Spectr	2.5	64
173	Characterization of Biomarkers and Structural Features of Condensed Aromatics in Xianfeng Lignite. Energy & Ene	2.5	60
174	Enrichment and Identification of Condensed Aromatics in a Bio-oil from Degraded Wheat Stalk in Supercritical Ethanol. Energy & Energy & 2013, 27, 596-598.	2.5	10
175	Structural Features of Extraction Residues from Supercritical Methanolysis of Two Chinese Lignites. Energy & En	2.5	45
176	ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Lignite Depolymerization in Supercritical Methanol with Lignite-Related Model Compounds. Energy & Samp; Fuels, 2012, 26, 984-989.	2.5	34
177	Mechanism analysis for supercritical ethanolysis of Huolinguole lignite. Journal of Fuel Chemistry and Technology, 2012, 40, 263-266.	0.9	10
178	A new solid acid for specifically cleaving the CarCalk bond in di(1-naphthyl)methane. Applied Catalysis A: General, 2012, 425-426, 79-84.	2.2	35
179	Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin. Bioresource Technology, 2012, 116, 114-119.	4.8	62
180	Separation and analysis of the degradation products of two coals in aqueous NaOCl solution. Journal of Fuel Chemistry and Technology, 2012, 40, 1-7.	0.9	37

#	Article	IF	CITATIONS
181	Sequential Thermal Dissolution of Huolinguole Lignite in Methanol and Ethanol. Energy & Samp; Fuels, 2011, 25, 2741-2745.	2.5	155
182	Difference in chemical composition of supercritical methanolysis products between two lignites. Applied Energy, 2011, 88, 4570-4576.	5.1	78
183	Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS+S and SO42-/ZrO2. Energy, 2011, 36, 41-45.	4.5	21
184	Conversion of Dagang Vacuum Residue into Oxygen-Containing Organic Compounds by Photo-Oxidation with H2O2 over TiO2. International Journal of Photoenergy, 2011, 2011, 1-9.	1.4	2
185	Molecular composition of soluble fraction from depolymerized cornstalk powder in supercritical methanol and ethanol. Renewable Energy, 2010, 35, 946-951.	4.3	26
186	Oxidation of Shenfu Coal with RuO ₄ and NaOCl. Energy & Samp; Fuels, 2010, 24, 1801-1808.	2.5	74
187	Isolation and Identification of Methyl Alkanoates from Lingwu Coal. Energy & Energy	2.5	24
188	Preparation and Property Measurement of Liquid Fuel from Supercritical Ethanolysis of Wheat Stalk ^{â€} . Energy & Description (Stalk + 1) 136-144.	2.5	27
189	Separation and analysis of organic compounds in an Erdos coal. Fuel, 2009, 88, 469-474.	3.4	77
190	Isolation and Identification of Two Bis(2-ethylheptyl) Benzenedicarboxylates from Lingwu Coal. Energy & Energy	2.5	27
191	Extraction of Organonitrogen Compounds from Five Chinese Coals with Methanol [#] . Energy & Ene	2.5	81
192	Microwave-Assisted Hydrogen Transfer to Anthracene and Phenanthrene over Pd/C. Energy & Energ	2.5	31
193	Selective Hydrogen Transfer to Anthracene and Its Derivatives over an Activated Carbon. Energy & Energy & Fuels, 2009, 23, 4877-4882.	2.5	24
194	Release of Organonitrogen and Organosulfur Compounds during Hydrotreatment of Pocahontas No. 3 Coal Residue over an Activated Carbon. Energy & Energy & 2009, 23, 5284-5286.	2.5	20
195	Hollow zeolite structures formed by crystallization in crosslinked polyacrylamide hydrogels. Journal of Materials Chemistry, 2008, 18, 3337.	6.7	59
196	FACILE SYNTHESIS OF ANXIOLYTIC BUSPIRONE. Organic Preparations and Procedures International, 2008, 40, 391-394.	0.6	5
197	Isolation and Identification of Fatty Acid Amides from Shengli Coal. Energy & Energy	2.5	43
198	Ruthenium Ion-Catalyzed Oxidation of Shenfu Coal and Its Residues. Energy &	2.5	74

#	Article	IF	Citations
199	Study Demonstrating Enhanced Oxidation Stability when Arylamine Antioxidants are Combined with Organic Molybdenum Complexes. Tribology Transactions, 2007, 50, 205-210.	1.1	5
200	Identification of Octathiocane, Organonitrogens, and Organosulfurs in Tongchuan Shale. Energy & Energy	2.5	11
201	Dewaxing from Stalks with Petroleum Ether by Different Methods. Energy & Dewaxing from Stalks with Petroleum Ether by Different Methods. Energy & Deway & Dewa	2.5	23
202	Identification of Organic Chlorines and Iodines in the Extracts from Hydrotreated Argonne Premium Coal Residues. Energy & Samp; Fuels, 2007, 21, 2238-2239.	2.5	28
203	A new synthesis method for benzo[<i>f</i>)]quinolinâ€3â€carbonyl urea and thiourea derivatives in aqueous media catalyzed by TEBAC. Journal of Heterocyclic Chemistry, 2007, 44, 441-447.	1.4	6
204	An improved synthesis of reduced 9-arylacridine-1,8-diones from 3-amino-5,5-dimethylcyclohex-2-enone, arylaldehydes and 1,3-dicarbonyl compounds in aqueous medium. Journal of Chemical Research, 2006, 2006, 719-721.	0.6	6
205	Synthesis of 5,7-Diarylpyrido[2,3-d]Pyrimidine Derivatives catalysed by Kf-Alumina. Journal of Chemical Research, 2006, 2006, 440-442.	0.6	1
206	Crystal Structure of 7-(4-Fluorophenyl)-5,6,7,14-tetrahydroquinolino[4,3-b]-benzo[f]quinolin-6-one N,N-Dimethylformamide Solvate. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X125-X126.	0.1	0
207	The hydrogen bonding in 2-amino-3-cyano-4-(3-nitrophenyl)-4,6-dihydro-5H-pyrano[3,2-c]quinolin-5-one N,N-dimethylformamide solvate monohydrate. Journal of Chemical Crystallography, 2006, 36, 697-701.	0.5	2
208	A clean synthesis of polyhydroacridine and indenoquinoline derivatives catalyzed by triethylbenzylammonium chloride in aqueous media. Journal of Heterocyclic Chemistry, 2006, 43, 989-995.	1.4	18
209	A Convenient and Clean Procedure for the Synthesis of Pyran Derivatives in Aqueous Media Catalysed by Tebac. Journal of Chemical Research, 2006, 2006, 228-230.	0.6	13
210	The crystal structure and unclassical pyran conformation of 2-amino-7-methyl-4-(3-nitrophenyl)-5-oxo-4H,5H-pyran [4,3-b]pyran-3-carbonitrile. Journal of Chemical Research, 2005, 2005, 775-777.	0.6	1
211	The structure of 2-amino-3-cyano-4-(4-methylphenyl)-6-methoxyl-1,4,9,10-tetrahydrobenzo[f]chromene. Journal of Chemical Crystallography, 2005, 35, 243-247.	0.5	2
212	One Pot Three Component Synthesis of 9-arylpolyhydroacridine Derivatives in an Ionic Liquid Medium. Journal of Chemical Research, 2005, 2005, 600-602.	0.6	29
213	Thermal Release and Catalytic Removal of Organic Sulfur Compounds from Upper Freeport Coal. Energy & E	2.5	21
214	Identification of organochlorines and organobromines in coals. Fuel, 2004, 83, 2435-2438.	3.4	75
215	Convenient synthesis ofn-methylpyrrolidine-2-thione and some thioamides. Korean Journal of Chemical Engineering, 2003, 20, 235-238.	1.2	11
216	Reaction of Di(1-naphthyl)methane over Metals and Metalâ~'Sulfur Systems. Energy & Samp; Fuels, 2003, 17, 652-657.	2.5	48

#	Article	IF	CITATION
217	GC/MS Analysis of Water-Soluble Products from the Mild Oxidation of Longkou Brown Coal with H2O2. Energy & Ener	2.5	68
218	ALTERNATIVE SYNTHESIS OF <i>N,N</i> à€²-DJPHENYLTHIOUREA AND ITS ANALYSIS BY LC-MS. Organic Preparations and Procedures International, 2003, 35, 409-411.	0.6	3
219	Photochemical Reactions of Hydroarenes with N-Bromosuccinimide. Bulletin of the Chemical Society of Japan, 2002, 75, 769-771.	2.0	6
220	Pd/C-Catalyzed Release of Organonitrogen Compounds from Bituminous Coals. Energy & E	2.5	21
221	Reactivities of Di(1-naphthyl)methane and Hydrogenated Di(1-naphthyl)methanes toward Hydrocracking over Niâ°'S. Energy & Samp; Fuels, 2002, 16, 1154-1159.	2.5	25
222	EFFICIENT AND CONVENIENT SYNTHESIS OF 3,4,5-TRIMETHOXYBENZALDEHYDE FROMp-CRESOL. Synthetic Communications, 2002, 32, 2809-2814.	1,1	11
223	Effects of iron catalyst precursors, sulfur, hydrogen pressure and solvent type on the hydrocracking of di(1-naphthyl)methane. Fuel, 1993, 72, 1547-1552.	3.4	40
224	Photobromination of Side-Chain Methyl Groups on Arenes withN-Bromosuccinimide–Convenient and Selective Syntheses of Bis(bromomethyl)- and (Bromomethyl)methylarenes–. Bulletin of the Chemical Society of Japan, 1992, 65, 345-348.	2.0	32