List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3900994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling reconstruction and boulder size-frequency distribution of a young (<5ÂMyr) landslide located in Simud Vallis floor, Mars. Icarus, 2022, 375, 114850.	1.1	4
2	Multiband photometry of Martian Recurring Slope Lineae (RSL) and dust-removed features at Horowitz crater, Mars from TGO/CaSSIS color observations. Planetary and Space Science, 2022, 214, 105443.	0.9	8
3	Global geologic map of asteroid (101955) Bennu indicates heterogeneous resurfacing in the past 500,000Âyears. Icarus, 2022, 381, 114992.	1.1	13
4	Crater population on asteroid (101955) Bennu indicates impact armouring and a young surface. Nature Geoscience, 2022, 15, 440-446.	5.4	20
5	An analysis of possible asteroids flyby for the ESA JUICE mission. Planetary and Space Science, 2022, 216, 105476.	0.9	2
6	Geology, in-situ resource-identification and engineering analysis of the Vernal crater area (Arabia) Tj ETQq0 0 0 rg	gBT/Qverlo	ock 10 Tf 50
7	A CaSSIS and HiRISE map of the Clay-bearing Unit at the ExoMars 2022 landing site in Oxia Planum. Planetary and Space Science, 2022, 214, 105429.	0.9	6
8	Assessing the Sampleability of Bennu's Surface for the OSIRIS-REx Asteroid Sample Return Mission. Space Science Reviews, 2022, 218, 20.	3.7	12
9	Pre-landslide topographic reconstruction in Baetis Chaos, mars using a CaSSIS Digital Elevation Model. Planetary and Space Science, 2022, 218, 105505.	0.9	0
10	Alignment of fractures on Bennu's boulders indicative of rapid asteroid surface evolution. Nature Geoscience, 2022, 15, 453-457.	5.4	11
	CaSSIS-based stereo products for Mars after three years in orbit. Planetary and Space Science, 2022.		

11	219, 105515.	0.9	3
12	Dynamical Evolution of Ejecta from the DART Impact on Dimorphos. Planetary Science Journal, 2022, 3, 118.	1.5	17
13	The SSDC Role in the LICIACube Mission: Data Management and the MATISSE Tool. Planetary Science Journal, 2022, 3, 126.	1.5	2
14	Expected Investigation of the (65803) Didymos–Dimorphos System Using the RGB Spectrophotometry Data Set from the LICIACube Unit Key Explorer (LUKE) Wide-angle Camera. Planetary Science Journal, 2022, 3, 161.	1.5	7
15	Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science, 2022, 377, 285-291.	6.0	39
16	Temperature dependent mid-infrared (5–25Âμm) reflectance spectroscopy of carbonaceous meteorites and minerals: Implication for remote sensing in Solar System exploration. Icarus, 2021, 354, 114040.	1.1	4
17	Lermontov crater on Mercury: Geology, morphology and spectral properties of the coexisting hollows and pyroclastic deposits. Planetary and Space Science, 2021, 195, 105136.	0.9	8

¹⁸ Equatorial grooves distribution on Ganymede: Length and self-similar clustering analysis. Planetary 0.9 8 and Space Science, 2021, 195, 105140.

#	Article	IF	CITATIONS
19	Periodic Bedrock Ridges at the ExoMars 2022 Landing Site: Evidence for a Changing Wind Regime. Geophysical Research Letters, 2021, 48, e2020GL091651.	1.5	19
20	Particle Size-Frequency Distributions of the OSIRIS-REx Candidate Sample Sites on Asteroid (101955) Bennu. Remote Sensing, 2021, 13, 1315.	1.8	33
21	Blocks Size Frequency Distribution in the Enceladus Tiger Stripes Area: Implications on Their Formative Processes. Universe, 2021, 7, 82.	0.9	9
22	Observational constraints to the dynamics of dust particles in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4687-4705.	1.6	5
23	Long-term measurements of the erosion and accretion of dust deposits on comet 67P/Churyumov–Gerasimenko with the OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2895-2910.	1.6	7
24	LICIACube - The Light Italian Cubesat for Imaging of Asteroids In support of the NASA DART mission towards asteroid (65803) Didymos. Planetary and Space Science, 2021, 199, 105185.	0.9	71
25	Topographic correction of HiRISE and CaSSIS images: Validation and application to color observations of Martian albedo features. Planetary and Space Science, 2021, 200, 105198.	0.9	8
26	Bennu's global surface and two candidate sample sites characterized by spectral clustering of OSIRIS-REx multispectral images. Icarus, 2021, 364, 114467.	1.1	14
27	Dynamics of recent landslides (<20 My) on Mars: Insights from high-resolution topography on Earth and Mars and numerical modelling. Planetary and Space Science, 2021, 206, 105303.	0.9	10
28	Volatiles on Mercury: The case of hollows and the pyroclastic vent of Tyagaraja crater. Icarus, 2021, 370, 114694.	1.1	9
29	CaSSIS color and multi-angular observations of Martian slope streaks. Planetary and Space Science, 2021, 209, 105373.	0.9	6
30	Characterisation of the main belt asteroid (223) Rosa. Astronomy and Astrophysics, 2021, 656, L18.	2.1	9
31	Variations in color and reflectance on the surface of asteroid (101955) Bennu. Science, 2020, 370, .	6.0	84
32	Photometry of Particles Ejected From Active Asteroid (101955) Bennu. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006381.	1.5	23
33	Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders. Nature, 2020, 587, 205-209.	13.7	62
34	Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 636, A91.	2.1	13
35	In situ evidence of thermally induced rock breakdown widespread on Bennu's surface. Nature Communications, 2020, 11, 2913.	5.8	62
36	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	47

#	Article	IF	CITATIONS
37	Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations. Planetary and Space Science, 2020, 187, 104947.	0.9	28
38	Rationale for BepiColombo Studies of Mercury's Surface and Composition. Space Science Reviews, 2020, 216, 1.	3.7	46
39	Global-scale brittle plastic rheology at the cometesimals merging of comet 67P/Churyumov–Gerasimenko. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10181-10187.	3.3	5
40	Boulder Analysis on the Oxia Planum ExoMars 2022 Rover Landing Site: Scientific and Engineering Perspectives. Solar System Research, 2020, 54, 504-519.	0.3	9
41	Volatile-rich Asteroids in the Inner Solar System. Planetary Science Journal, 2020, 1, 82.	1.5	7
42	Surface Morphology of Comets and Associated Evolutionary Processes: A Review of Rosetta's Observations of 67P/Churyumov–Gerasimenko. Space Science Reviews, 2019, 215, 1.	3.7	28
43	Spectrophotometric variegation of the layering in comet 67P/Churyumov-Gerasimenko as seen by OSIRIS. Astronomy and Astrophysics, 2019, 630, A16.	2.1	2
44	Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 2019, 3, 341-351.	4.2	188
45	Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 2019, 12, 242-246.	5.4	161
46	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	1.6	9
47	Planetary Mapping for Landing Sites Selection: The Mars Case Study. Lecture Notes in Geoinformation and Cartography, 2019, , 175-190.	0.5	3
48	Mapping Irregular Bodies. Lecture Notes in Geoinformation and Cartography, 2019, , 191-203.	0.5	0
49	Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.	5.4	22
50	Rosetta/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry. Astronomy and Astrophysics, 2019, 630, A9.	2.1	6
51	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	2.1	15
52	Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.	2.1	4
53	Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A7.	2.1	18
54	The Rockyâ€Like Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters. 2019. 46. 14336-14346.	1.5	9

#	Article	IF	CITATIONS
55	Abundance and size-frequency distribution of boulders in Linné crater's ejecta (Moon). Planetary and Space Science, 2019, 165, 99-109.	0.9	14
56	Phobos MRO/CRISM visible and near-infrared (0.5–2.5â€ [−] μm) spectral modeling. Planetary and Space Science, 2018, 154, 63-71.	0.9	13
57	Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	24
58	Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs (<i>Corrigendum</i>). Astronomy and Astrophysics, 2018, 614, C2.	2.1	0
59	Mercury Hollows as Remnants of Original Bedrock Materials and Devolatilization Processes: A Spectral Clustering and Geomorphological Analysis. Journal of Geophysical Research E: Planets, 2018, 123, 2365-2379.	1.5	23
60	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	2.1	40
61	Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.	4.2	19
62	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	2.1	15
63	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	1.6	7
64	Radar evidence of subglacial liquid water on Mars. Science, 2018, 361, 490-493.	6.0	346
65	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.	2.1	8
66	Boulder abundances and size-frequency distributions on Oxia Planum-Mars: Scientific implications for the 2020 ESA ExoMars rover. Icarus, 2017, 296, 73-90.	1.1	33
67	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	6.0	63
68	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	4.2	100
69	Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.	1.6	13
70	Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.	2.1	43
71	Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S178-S185.	1.6	12
72	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	1.6	33

#	Article	IF	CITATIONS
73	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	1.6	44
74	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	1.6	111
75	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	1.6	43
76	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	1.6	30
77	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	1.6	39
78	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.	1.6	12
79	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	1.6	8
80	Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly Notices of the Royal Astronomical Society, 2017, 469, s606-s625.	1.6	45
81	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	1.6	40
82	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	1.6	22
83	Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S195-S203.	1.6	17
84	Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.	2.1	7
85	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	2.1	107
86	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	1.6	24
87	Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.	1.6	27
88	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.	2.1	27
89	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	2.1	55
90	Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.	2.1	26

#	Article	IF	CITATIONS
91	Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462, S57-S66.	1.6	23
92	Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.	1.6	112
93	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	2.1	102
94	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.	2.1	86
95	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	2.1	67
96	Comparative study of water ice exposures on cometary nuclei using multispectral imaging data. Monthly Notices of the Royal Astronomical Society, 2016, 462, S394-S414.	1.6	18
97	The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155.	2.1	39
98	Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 590, A46.	2.1	14
99	A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.	2.1	29
100	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	2.1	53
101	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	2.1	34
102	Photometry of dust grains of comet 67P and connection with nucleus regions. Astronomy and Astrophysics, 2016, 588, A59.	2.1	10
103	Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover. Icarus, 2016, 275, 163-182.	1.1	21
104	Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.	1.6	20
105	Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.	2.1	22
106	Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S287-S303.	1.6	26
107	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	6.0	97
108	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	1.6	15

#	Article	IF	CITATIONS
109	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	1.6	23
110	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
111	The Simud–Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration. Icarus, 2016, 268, 355-381.	1.1	21
112	Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2. Astronomy and Astrophysics, 2016, 585, A85.	2.1	23
113	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	2.1	43
114	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	2.1	67
115	Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.	2.1	8
116	Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.	2.1	113
117	Hydraulic modeling of the tributary and the outlet of a Martian paleolake located in the Memnonia quadrangle. Journal of Geophysical Research E: Planets, 2015, 120, 1597-1619.	1.5	5
118	OSIRIS observations of meter-sized exposures of H ₂ O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	2.1	97
119	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	2.1	149
120	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	2.1	173
121	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	2.1	33
122	67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS. Astronomy and Astrophysics, 2015, 573, A62.	2.1	60
123	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	2.1	188
124	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	2.1	153
125	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	2.1	59
126	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	2.1	108

#	Article	IF	CITATIONS
127	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	2.1	41
128	Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.	2.1	53
129	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	2.1	60
130	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	2.1	39
131	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	1.5	71
132	Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.	2.1	23
133	Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft. Astronomy and Astrophysics, 2015, 574, A123.	2.1	14
134	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	6.0	366
135	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	6.0	259
136	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	13.7	158
137	Phobos grooves and impact craters: A stereographic analysis. Icarus, 2015, 256, 90-100.	1.1	26
138	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	13.7	141
139	Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.	2.1	13
140	PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm. Astrophysical Journal, 2013, 777, 127.	1.6	54
141	Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3230-3243.	1.6	47
142	(21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations. Planetary and Space Science, 2012, 66, 43-53.	0.9	31
143	Search for satellites near (21) Lutetia using OSIRIS/Rosetta images. Planetary and Space Science, 2012, 66, 64-70.	0.9	6
144	Geological map and stratigraphy of asteroid 21 Lutetia. Planetary and Space Science, 2012, 66, 125-136.	0.9	42

#	Article	IF	CITATIONS
145	The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6