
Jeffrey M Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations. Astrophysical Journal Letters, 2022, 927, L8.	3.0	32
2	Large-scale cryovolcanic resurfacing on Pluto. Nature Communications, 2022, 13, 1542.	5.8	15
3	A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. Planetary Science Journal, 2022, 3, 112.	1.5	15
4	The Geophysical Environment of (486958) Arrokoth—A Small Kuiper Belt Object Explored by <i>New Horizons</i> . Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	18
5	Detection of Radio Thermal Emission from the Kuiper Belt Object (486958) Arrokoth during the New Horizons Encounter. Planetary Science Journal, 2022, 3, 109.	1.5	3
6	Snow Crash: Compaction Craters on (486958) Arrokoth and Other Small KBOs, With Implications. Geophysical Research Letters, 2022, 49, .	1.5	3
7	Cryovolcanic flooding in Viking Terra on Pluto. Icarus, 2021, 356, 113786.	1.1	9
8	Origins of pits and troughs and degradation on a small primitive planetesimal in the Kuiper Belt: high-resolution topography of (486958) Arrokoth (aka 2014 MU69) from New Horizons. Icarus, 2021, 356, 113834.	1.1	5
9	Geologically Diverse Pluto and Charon: Implications for the Dwarf Planets of the Kuiper Belt. Annual Review of Earth and Planetary Sciences, 2021, 49, 173-200.	4.6	10
10	Morphological comparison of blocks in chaos terrains on Pluto, Europa, and Mars. Icarus, 2021, 356, 113866.	1.1	15
11	Charon's Far Side Geomorphology. Planetary Science Journal, 2021, 2, 141.	1.5	2
12	Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon. Remote Sensing, 2021, 13, 3476.	1.8	7
13	Modeling global-scale mass flows on the Lagrangian satellites of Dione and Tethys. Icarus, 2021, 369, 114612.	1.1	3
14	New Horizons Observations of the Cosmic Optical Background. Astrophysical Journal, 2021, 906, 77.	1.6	42
15	The Dark Side of Pluto. Planetary Science Journal, 2021, 2, 214.	1.5	2
16	Collisions of Small Kuiper Belt Objects With (486958) Arrokoth: Implications for Its Spin Evolution and Bulk Density. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006961.	1.5	3
17	Landslides on Charon. Icarus, 2020, 335, 113383.	1.1	12
18	Topography and geology of Uranian mid-sized icy satellites in comparison with Saturnian and Plutonian satellites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200102.	1.6	24

#	Article	IF	CITATIONS
19	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	64
20	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	76
21	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	6.0	79
22	Migrating Scarps as a Significant Driver for Cometary Surface Evolution. Geophysical Research Letters, 2019, 46, 12794-12804.	1.5	10
23	The nature and origin of Charon's smooth plains. Icarus, 2019, 323, 16-32.	1.1	26
24	Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research E: Planets, 2019, 124, 155-174.	1.5	11
25	Detection of ammonia on Pluto's surface in a region of geologically recent tectonism. Science Advances, 2019, 5, eaav5731.	4.7	49
26	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	6.0	113
27	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	1.1	45
28	Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science, 2019, 363, 955-959.	6.0	116
29	Washboard and fluted terrains on Pluto as evidence for ancient glaciation. Nature Astronomy, 2019, 3, 62-68.	4.2	10
30	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	1.1	47
31	Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications. Journal of Geophysical Research E: Planets, 2018, 123, 20-36.	1.5	9
32	Formation of metre-scale bladed roughness on Europa's surface by ablation of ice. Nature Geoscience, 2018, 11, 901-904.	5.4	25
33	Dunes on Pluto. Science, 2018, 360, 992-997.	6.0	81
34	Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons. Icarus, 2018, 315, 124-145.	1.1	29
35	Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU ₆₉ ("Ultima Thuleâ€). Geophysical Research Letters, 2018, 45, 8111-8120.	1.5	14
36	Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons. Icarus, 2018, 314, 400-433.	1.1	75

#	Article	IF	CITATIONS
37	Geological mapping of Sputnik Planitia on Pluto. Icarus, 2017, 287, 261-286.	1.1	52
38	Pluto: Pits and mantles on uplands north and east of Sputnik Planitia. Icarus, 2017, 293, 218-230.	1.1	24
39	Charon tectonics. Icarus, 2017, 287, 161-174.	1.1	30
40	Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins. Geophysical Research Letters, 2017, 44, 11,745.	1.5	43
41	Climate zones on Pluto and Charon. Icarus, 2017, 287, 30-36.	1.1	34
42	Sublimation as a landform-shaping process on Pluto. Icarus, 2017, 287, 320-333.	1.1	51
43	Mean radius and shape of Pluto and Charon from New Horizons images. Icarus, 2017, 287, 12-29.	1.1	105
44	Present and past glaciation on Pluto. Icarus, 2017, 287, 287-300.	1.1	43
45	Craters of the Pluto-Charon system. Icarus, 2017, 287, 187-206.	1.1	59
46	Modeling of ice pinnacle formation on Callisto. Journal of Geophysical Research E: Planets, 2016, 121, 21-45.	1.5	23
47	The rapid formation of Sputnik Planitia early in Pluto's history. Nature, 2016, 540, 97-99.	13.7	34
48	Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature, 2016, 540, 94-96.	13.7	108
49	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	13.7	44
50	Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature, 2016, 534, 82-85.	13.7	102
51	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	6.0	201
52	The small satellites of Pluto as observed by New Horizons. Science, 2016, 351, aae0030.	6.0	78
53	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	6.0	219
54	Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars. Icarus, 2016, 270, 100-113.	1.1	21

#	Article	IF	CITATIONS
55	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	6.0	407
56	Geology before Pluto: Pre-encounter considerations. Icarus, 2015, 246, 65-81.	1.1	29
57	The landscape of Titan as witness to its climate evolution. Journal of Geophysical Research E: Planets, 2014, 119, 2060-2077.	1.5	26
58	Fluvial features on Titan: Insights from morphology and modeling. Bulletin of the Geological Society of America, 2013, 125, 299-321.	1.6	93
59	Evidence for a short period of hydrologic activity in Newton crater, Mars, near the Hesperianâ€Amazonian transition. Journal of Geophysical Research E: Planets, 2013, 118, 1082-1093.	1.5	8
60	Sublimation-driven erosion on Hyperion: Topographic analysis and landform simulation model tests. Icarus, 2012, 220, 268-276.	1.1	17
61	Correction to "Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?― Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	3
62	Titan: An exogenic world?. Icarus, 2011, 212, 790-806.	1.1	93
63	Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?. Geophysical Research Letters, 2010, 37, .	1.5	36
64	Laboratory simulations of Mars evaporite geochemistry. Journal of Geophysical Research, 2010, 115, .	3.3	12
65	Evidence for ancient lakes in the Hellas region. , 2010, , 195-222.		9
66	Longâ€ŧerm precipitation and lateâ€stage valley network formation: Landform simulations of Parana Basin, Mars. Journal of Geophysical Research, 2009, 114, .	3.3	95
67	Tectonics of the outer planet satellites. , 2009, , 264-350.		30
68	Icy Satellites: Geological Evolution and Surface Processes. , 2009, , 637-681.		34
69	Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission. Space Science Reviews, 2008, 140, 129-154.	3.7	141
70	Sublimationâ€driven erosion on Callisto: A landform simulation model test. Geophysical Research Letters, 2008, 35, .	1.5	26
71	Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven. Journal of Geophysical Research, 2008, 113, .	3.3	21
72	Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. Journal of Geophysical Research, 2007, 112, .	3.3	108

#	Article	IF	CITATIONS
73	Atmospheric conditions on early Mars and the missing layered carbonates. Geophysical Research Letters, 2007, 34, .	1.5	58
74	Quantitative geomorphic modeling of Martian bedrock shorelines. Journal of Geophysical Research, 2006, 111, .	3.3	26
75	Large alluvial fans on Mars. Journal of Geophysical Research, 2005, 110, .	3.3	190
76	An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. Journal of Geophysical Research, 2005, 110, .	3.3	269
77	An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research, 2005, 110, .	3.3	334
78	Blueberry fields for ever. Nature, 2004, 428, 711-712.	13.7	34
79	Laboratory simulations of Mars aqueous geochemistry. Icarus, 2004, 170, 404-423.	1.1	38
80	Large impact features on middle-sized icy satellites. Icarus, 2004, 171, 421-443.	1.1	75
81	Aqueous alteration of Mars-analog rocks under an acidic atmosphere. Geophysical Research Letters, 2004, 31, .	1.5	16
82	Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios. Geophysical Research Letters, 2003, 30, .	1.5	165
83	Hellas as a Possible Site of Ancient Ice-Covered Lakes on Mars. Icarus, 2001, 154, 258-276.	1.1	156
84	Stereo topography of the south polar region of Mars: Volatile inventory and Mars Polar Lander landing site. Journal of Geophysical Research, 2000, 105, 24529-24546.	3.3	23
85	Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission. Icarus, 1999, 140, 294-312.	1.1	128
86	Evidence for a subsurface ocean on Europa. Nature, 1998, 391, 363-365.	13.7	514
87	Large Impact Features on Europa: Results of the Galileo Nominal Mission. Icarus, 1998, 135, 127-145.	1.1	110
88	Dark Terrain on Ganymede: Geological Mapping and Interpretation of Galileo Regio at High Resolution. Icarus, 1998, 135, 317-344.	1.1	119
89	Geologic Landforms and Processes on Icy Satellites. Astrophysics and Space Science Library, 1998, , 551-578.	1.0	11
90	Mass Wasting and Ground Collapse in Terrains of Volatile-Rich Deposits as a Solar System-Wide Geological Process: The Pre-Galileo View. Icarus, 1996, 122, 63-78.	1.1	56

#	Article	IF	CITATIONS
91	The influence of thermal inertia on temperatures and frost stability on Triton. Icarus, 1992, 99, 261-272.	1.1	82
92	KOYAANISMUUYAW: THE HYPOTHESIS OF A PERENNIALLY DICHOTOMOUS TRITON. Geophysical Research Letters, 1990, 17, 1757-1760.	1.5	33
93	Dome craters on Ganymede. Geophysical Research Letters, 1988, 15, 225-228.	1.5	41
94	The geomorphology of Rhea: Implications for geologic history and surface processes. Journal of Geophysical Research, 1985, 90, C785.	3.3	32
95	The tectonic and volcanic history of Dione. Icarus, 1984, 59, 205-220.	1.1	60
96	The geology of Tethys. Journal of Geophysical Research, 1983, 88, A577.	3.3	39