W Berry Lyons

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3900805/w-berry-lyons-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

189 6,244 45 72 g-index

193 7,030 4.8 5.37 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
189	Elevational Constraints on the Composition and Genomic Attributes of Microbial Communities in Antarctic Soils <i>MSystems</i> , 2022 , e0133021	7.6	1
188	Barotropic seiches in a perennially ice-covered lake, East Antarctica. <i>Limnology and Oceanography Letters</i> , 2022 , 7, 26-33	7.9	0
187	Relationship between meteoric ¹⁰Be and NO₃ concentrations in soils along Shackleton Glacier, Antarctica. <i>Earth Surface Dynamics</i> , 2021 , 9, 1363-1380	3.8	О
186	Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica. <i>Biogeosciences</i> , 2021 , 18, 1629-1644	4.6	4
185	Exploring the Boundaries of Microbial Habitability in Soil. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG006052	3.7	5
184	Urban Geochemistry 2021 , 235-250		
183	Geochemistry of contrasting stream types, Taylor Valley, Antarctica. <i>Bulletin of the Geological Society of America</i> , 2021 , 133, 425-448	3.9	2
182	Chemical Weathering in the McMurdo Dry Valleys, Antarctica. <i>Geophysical Monograph Series</i> , 2021 , 205-	2:16	3
181	The geochemistry of Irish rivers. <i>Journal of Hydrology: Regional Studies</i> , 2021 , 37, 100881	3.6	1
180	Chemical Weathering in Small Mountainous Rivers of Southern Italy and Northern Spain. <i>Aquatic Geochemistry</i> , 2020 , 26, 269-291	1.7	
179	Uranium in Ohio, USA Surface Waters: Implications for a Fertilizer Source in Waters Draining Agricultural lands. <i>Scientific Reports</i> , 2020 , 10, 5151	4.9	7
178	Silicon Isotopes Reveal a Non-glacial Source of Silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	5
177	The hydrogeochemistry of shallow groundwater from Lut Desert, Iran: The hottest place on Earth. Journal of Arid Environments, 2020 , 178, 104143	2.5	5
176	Geochemistry of aeolian material from the McMurdo Dry Valleys, Antarctica: Insights into Southern Hemisphere dust sources. <i>Earth and Planetary Science Letters</i> , 2020 , 547, 116460	5.3	5
175	Land cover effects on soil infiltration capacity measured using plot scale rainfall simulation in steep tropical lowlands of Central Panama. <i>Hydrological Processes</i> , 2020 , 34, 878-897	3.3	13
174	Stable Isotopes of Nitrate, Sulfate, and Carbonate in Soils From the Transantarctic Mountains, Antarctica: A Record of Atmospheric Deposition and Chemical Weathering. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	6
173	Enhanced trace element mobilization by Earth's ice sheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31648-31659	11.5	12

(2018-2020)

172	Silicon Isotopic Composition of Dry and Wet-Based Glaciers in Antarctica. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	3
171	Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 22293-22302	11.5	17
170	Diurnal chemistry of two contrasting stream types, Taylor Valley, McMurdo Dry Valley Region, Antarctica. <i>E3S Web of Conferences</i> , 2019 , 98, 01020	0.5	
169	The geochemistry of glacial deposits in Taylor Valley, Antarctica: Comparison to upper continental crustal abundances. <i>Applied Geochemistry</i> , 2019 , 107, 91-104	3.5	2
168	Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. <i>Environmental Microbiology</i> , 2019 , 21, 2290-2306	5.2	7
167	Modelled composition of cryogenically produced subglacial brines, Antarctica. <i>Antarctic Science</i> , 2019 , 31, 165-166	1.7	1
166	Groundwater discharge to the western Antarctic coastal ocean. Polar Research, 2019, 38,	2	4
165	The Geochemistry of Englacial Brine From Taylor Glacier, Antarctica. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 633-648	3.7	18
164	Geochemistry of Urban Water Systems 2019 , 1-6		
163	Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry. <i>International Journal of Environmental Analytical Chemistry</i> , 2019 , 1-14	1.8	2
162	Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica. <i>Geoderma</i> , 2018 , 320, 136-145	6.7	15
161	Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 2877-2887	4.4	16
160	Stable C and N isotope ratios reveal soil food web structure and identify the nematode Eudorylaimus antarcticus as an omnivorepredator in Taylor Valley, Antarctica. <i>Polar Biology</i> , 2018 , 41, 1013-1018	2	25
159	Dissolved Trace and Minor Elements in Cryoconite Holes and Supraglacial Streams, Canada Glacier, Antarctica. <i>Frontiers in Earth Science</i> , 2018 , 6,	3.5	3
158	The impact of fossil fuel burning related to scientific activities in the McMurdo Dry Valleys, Antarctica: Revisited. <i>Elementa</i> , 2018 , 6,	3.6	3
157	Barium and barite dynamics in Antarctic streams. <i>Geology</i> , 2018 , 46, 811-814	5	1
156	Aeolian Material Transport and Its Role in Landscape Connectivity in the McMurdo Dry Valleys, Antarctica. <i>Journal of Geophysical Research F: Earth Surface</i> , 2018 , 123, 3323-3337	3.8	11
155	Fe and Nutrients in Coastal Antarctic Streams: Implications for Primary Production in the Ross Sea. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3507-3522	3.7	4

154	Transit Times and Rapid Chemical Equilibrium Explain Chemostasis in Glacial Meltwater Streams in the McMurdo Dry Valleys, Antarctica. <i>Geophysical Research Letters</i> , 2018 , 45, 13,322	4.9	14
153	Variations in Dissolved Nitrate, Chloride, and Sulfate in Precipitation, Reservoir, and Tap Waters, Columbus, Ohio. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	7
152	Ca isotopic geochemistry of an Antarctic aquatic system. <i>Geophysical Research Letters</i> , 2017 , 44, 882-89	914.9	6
151	Dissolved trace metals in low-order, urban stream water, Columbus, Ohio. <i>Applied Geochemistry</i> , 2017 , 83, 86-92	3.5	5
150	An englacial hydrologic system of brine within a cold glacier: Blood Falls, McMurdo Dry Valleys, Antarctica. <i>Journal of Glaciology</i> , 2017 , 63, 387-400	3.4	26
149	Urban Geochemistry. Applied Geochemistry, 2017 , 83, 1-2	3.5	2
148	Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 219, 22-43	5.5	15
147	Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1334-1338	12.3	46
146	Evidence for the Activation of Shallow Preferential Flow Paths in a Tropical Panama Watershed Using Germanium and Silicon. <i>Water Resources Research</i> , 2017 , 53, 8533-8553	5.4	8
145	A temporal stable isotopic (🛮 80, D, d-excess) comparison in glacier meltwater streams, Taylor Valley, Antarctica. <i>Hydrological Processes</i> , 2017 , 31, 3069-3083	3.3	7
144	Antarctic subglacial lake exploration: first results and future plans. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	18
143	Linking silicate weathering to riverine geochemistry acase study from a mountainous tropical setting in west-central Panama. <i>Bulletin of the Geological Society of America</i> , 2016 , 128, 1780-1812	3.9	11
142	Patterns of hydrologic connectivity in the McMurdo Dry Valleys, Antarctica: a synthesis of 20 years of hydrologic data. <i>Hydrological Processes</i> , 2016 , 30, 2958-2975	3.3	24
141	Developing the scientific framework for urban geochemistry. <i>Applied Geochemistry</i> , 2016 , 67, 1-20	3.5	48
140	Source of Lake Vostok Cations Constrained with Strontium Isotopes. <i>Frontiers in Earth Science</i> , 2016 , 4,	3.5	4
139	Hydrological Controls on Ecosystem Dynamics in Lake Fryxell, Antarctica. <i>PLoS ONE</i> , 2016 , 11, e015903	883.7	1
138	The Soil Geochemistry in the Beardmore Glacier Region, Antarctica: Implications for Terrestrial Ecosystem History. <i>Scientific Reports</i> , 2016 , 6, 26189	4.9	14
137	Hydrologic tracers and thresholds: A comparison of geochemical techniques for event-based stream hydrograph separation and flowpath interpretation across multiple land covers in the Panama Canal Watershed. <i>Applied Geochemistry</i> , 2015 , 63, 507-518	3.5	19

(2013-2015)

136	Comparison of arsenic and molybdenum geochemistry in meromictic lakes of the McMurdo Dry Valleys, Antarctica: Implications for oxyanion-forming trace element behavior in permanently stratified lakes. <i>Chemical Geology</i> , 2015 , 404, 110-125	4.2	19
135	Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1 <i>Geology</i> , 2015 , 43, 100)3-100	614
134	Experimental formation of pore fluids in McMurdo Dry Valleys soils. <i>Antarctic Science</i> , 2015 , 27, 163-17	11.7	5
133	Isotopic Geochemistry of Panama Rivers. <i>Procedia Earth and Planetary Science</i> , 2015 , 13, 108-111		
132	Organic carbon concentrations and transport in small mountain rivers, Panama. <i>Applied Geochemistry</i> , 2015 , 63, 540-549	3.5	13
131	Patterns and Processes of Salt Efflorescences in the McMurdo region, Antarctica. <i>Arctic, Antarctic, and Alpine Research</i> , 2015 , 47, 407-425	1.8	16
130	Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams. <i>Water Resources Research</i> , 2015 , 51, 6725-6738	5.4	6
129	Evaluation of controls on silicate weathering in tropical mountainous rivers: Insights from the Isthmus of Panama. <i>Geology</i> , 2015 , 43, 563-566	5	8
128	Assessment of stream geochemistry in west central Nicaragua during baseflow conditions. <i>Applied Geochemistry</i> , 2015 , 63, 519-526	3.5	4
127	The spatial structure of Antarctic biodiversity. <i>Ecological Monographs</i> , 2014 , 84, 203-244	9	203
126	Boron isotopic geochemistry of the McMurdo Dry Valley lakes, Antarctica. <i>Chemical Geology</i> , 2014 , 386, 152-164	4.2	9
125	Evaluating the influence of road salt on water quality of Ohio rivers over time. <i>Applied Geochemistry</i> , 2014 , 47, 25-35	3.5	41
124	Defining Urban Geochemistry. <i>Eos</i> , 2014 , 95, 460-460	1.5	1
123	Water track modification of soil ecosystems in the Lake Hoare basin, Taylor Valley, Antarctica. <i>Antarctic Science</i> , 2014 , 26, 153-162	1.7	15
122	Radiocarbon distribution and the effect of legacy in lakes of the McMurdo Dry Valleys, Antarctica. <i>Limnology and Oceanography</i> , 2014 , 59, 811-826	4.8	14
121	The effects of high meltwater on the limnology of Lake Fryxell and Lake Hoare, Taylor Valley, Antarctica, as shown by dissolved gas, tritium and chlorofluorocarbons. <i>Antarctic Science</i> , 2014 , 26, 331-	-3470	5
120	Diel stream geochemistry, Taylor Valley, Antarctica. <i>Hydrological Processes</i> , 2013 , 27, 394-404	3.3	13
119	Surface Water Geochemistry and Chemical Weathering Across Panama. <i>Procedia Earth and Planetary Science</i> , 2013 , 7, 342-345		2

118	Strontium Isotopic Signatures of Streams from Taylor Valley, Antarctica, Revisited: The Role of Carbonate Mineral Dissolution. <i>Aquatic Geochemistry</i> , 2013 , 19, 231-240	1.7	7
117	Geochemistry of streams from Byers Peninsula, Livingston Island. <i>Antarctic Science</i> , 2013 , 25, 181-190	1.7	14
116	Do Cryoconite Holes have the Potential to be Significant Sources of C, N, and P to Downstream Depauperate Ecosystems of Taylor Valley, Antarctica?. <i>Arctic, Antarctic, and Alpine Research</i> , 2013 , 45, 440-454	1.8	43
115	Garwood Valley, Antarctica: A new record of Last Glacial Maximum to Holocene glaciofluvial processes in the McMurdo Dry Valleys. <i>Bulletin of the Geological Society of America</i> , 2013 , 125, 1484-15	0 2 ·9	15
114	Geochemical Linkages Among Glaciers, Streams and Lakes Within the Taylor Valley, Geochemical Linkages Among Glaciers, Streams And Lakes Within The Taylor Valley, Antartica. <i>Antarctic Research Series</i> , 2013 , 77-92		11
113	Hypersaline Wet patches In Taylor Valley, Antarctica. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	33
112	Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 98, 19-30	5.5	27
111	The geochemistry of upland ponds, Taylor Valley, Antarctica. <i>Antarctic Science</i> , 2012 , 24, 3-14	1.7	27
110	Eolian deposition of trace elements onto Taylor Valley Antarctic glaciers. <i>Applied Geochemistry</i> , 2011 , 26, 1897-1904	3.5	20
109	Hydrological Connectivity of the Landscape of the McMurdo Dry Valleys, Antarctica. <i>Geography Compass</i> , 2011 , 5, 666-681	2.4	41
108	The fate of minor alkali elements in the chemical evolution of salt lakes. Saline Systems, 2011, 7, 2		15
107	Biogeochemical weathering under ice: Size matters. Global Biogeochemical Cycles, 2010 , 24, n/a-n/a	5.9	134
106			
106	Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 85-103	5.5	72
105		5·5 4·2	72
	Dominica, Lesser Antilles. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 85-103 Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. <i>Chemical Geology</i> , 2010 ,		,
105	Dominica, Lesser Antilles. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 85-103 Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. <i>Chemical Geology</i> , 2010 , 275, 139-147 Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica.	4.2	24
105	Dominica, Lesser Antilles. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 85-103 Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. <i>Chemical Geology</i> , 2010 , 275, 139-147 Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. <i>Antarctic Science</i> , 2010 , 22, 662-672 Physiochemical properties influencing biomass abundance and primary production in Lake Hoare,	1.7	24 77

(2006-2009)

100	Particulate organic and dissolved inorganic carbon stable isotopic compositions in Taylor Valley lakes, Antarctica: the effect of legacy. <i>Hydrobiologia</i> , 2009 , 632, 139-156	2.4	7	
99	Influence of hydrogeology, microbiology and landscape history on the geochemistry of acid hypersaline waters, N.W. Victoria. <i>Applied Geochemistry</i> , 2009 , 24, 285-296	3.5	18	
98	Geochemistry of four tropical montane watersheds, Central Panama. <i>Applied Geochemistry</i> , 2009 , 24, 624-640	3.5	27	
97	Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation. <i>Paleoceanography</i> , 2008 , 23, n/a-n/a		32	
96	A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie. <i>Applied Geochemistry</i> , 2008 , 23, 3434-3441	3.5	2	
95	Geochemical fluxes and weathering of volcanic terrains on high standing islands: Taranaki and Manawatu-Wanganui regions of New Zealand. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 2248-2267	5.5	40	
94	Mercury deposition in a polar desert ecosystem. <i>Environmental Science & Environmental Science & Envir</i>	1 0:-6 .3	41	
93	Supersaturated N2O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic evidence for a biogeochemical relict. <i>Limnology and Oceanography</i> , 2008 , 53, 2439-2450	4.8	19	
92	Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. <i>Geology</i> , 2008 , 36, 483	5	96	
91	Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. <i>Journal of Geophysical Research</i> , 2007 , 112,		78	
90	Organic carbon in Antarctic snow. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	15	
89	Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		56	
88	Pedogenic carbonate distribution within glacial till in Taylor Valley, Southern Victoria Land, Antarctica 2006 ,		5	
87	The geochemistry of rivers in tectonically active areas of Taiwan and New Zealand 2006,		3	
86	A Stable Isotopic Investigation of a Polar Desert Hydrologic System, McMurdo Dry Valleys, Antarctica. <i>Arctic, Antarctic, and Alpine Research</i> , 2006 , 38, 60-71	1.8	54	
85	Mercury geochemistry of the Scioto River, Ohio: Impact of agriculture and urbanization. <i>Applied Geochemistry</i> , 2006 , 21, 1880-1888	3.5	35	
84	Hydrologic controls on water chemistry and mercury biotransformation in a closed river system: The Carson River, Nevada. <i>Applied Geochemistry</i> , 2006 , 21, 1999-2009	3.5	16	
83	The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. <i>Antarctic Science</i> , 2006 , 18, 497-505	1.7	59	

82	Limnological conditions in Subglacial Lake Vostok, Antarctica. <i>Limnology and Oceanography</i> , 2006 , 51, 2485-2501	4.8	142
81	Halogen geochemistry of the McMurdo dry valleys lakes, Antarctica: Clues to the origin of solutes and lake evolution. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 305-323	5.5	58
80	Historical backcasting of metal concentrations in the Chattahoochee River, Georgia: Population growth and environmental policy. <i>Applied Geochemistry</i> , 2005 , 20, 2315-2324	3.5	11
79	Chemical weathering in high-sediment-yielding watersheds, New Zealand. <i>Journal of Geophysical Research</i> , 2005 , 110,		48
78	Organic carbon yields from small, mountainous rivers, New Zealand. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	49
77	Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. <i>Annals of Glaciology</i> , 2005 , 40, 200-206	2.5	68
76	The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology duringa cool summer. <i>Annals of Glaciology</i> , 2005 , 40, 15-19	2.5	11
75	Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. <i>Science of the Total Environment</i> , 2005 , 347, 187-207	10.2	55
74	Significance of Landscape Age, Uplift, and Weathering Rates to Ecosystem Development. <i>Aquatic Geochemistry</i> , 2005 , 11, 215-239	1.7	18
73	The Geochemistry of Supraglacial Streams of Canada Glacier, Taylor Valley (Antarctica), and their Evolution into Proglacial Waters. <i>Aquatic Geochemistry</i> , 2005 , 11, 391-412	1.7	52
72	Geomicrobiology of Blood Falls: An Iron-Rich Saline Discharge at the Terminus of the Taylor Glacier, Antarctica. <i>Aquatic Geochemistry</i> , 2004 , 10, 199-220	1.7	79
71	The Helium Isotopic Chemistry of Lake Bonney, Taylor Valley, Antarctica: Timing of Late Holocene Climate Change in Antarctica. <i>Aquatic Geochemistry</i> , 2004 , 10, 353-371	1.7	49
70	The distribution of microplankton in the McMurdo Dry Valley Lakes, Antarctica: response to ecosystem legacy or present-day climatic controls?. <i>Polar Biology</i> , 2004 , 27, 238-249	2	45
69	Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. <i>Hydrological Processes</i> , 2004 , 18, 379-387	3.3	101
68	Impact of land use and physicochemical settings on aqueous methylmercury levels in the Mobile-Alabama River System. <i>Ambio</i> , 2004 , 33, 328-33	6.5	10
67	The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. <i>Hydrological Processes</i> , 2003 , 17, 795-814	3.3	61
66	Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. <i>Hydrological Processes</i> , 2003 , 17, 115-130	3.3	68
65	Strontium isotopes and rare earth elements as tracers of groundwaterlake water interactions, Lake Naivasha, Kenya. <i>Applied Geochemistry</i> , 2003 , 18, 1789-1805	3.5	58

(1999-2003)

64	Snow-Patch Influence on Soil Biogeochemical Processes and Invertebrate Distribution in the McMurdo Dry Valleys, Antarctica. <i>Arctic, Antarctic, and Alpine Research</i> , 2003 , 35, 91-99	1.8	77
63	Antarctic climate cooling and terrestrial ecosystem response. <i>Nature</i> , 2002 , 415, 517-20	50.4	349
62	Strontium Isotopic Signatures of the Streams and Lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical Weathering in a Polar Climate. <i>Aquatic Geochemistry</i> , 2002 , 8, 75-95	1.7	23
61	Organic carbon fluxes to the ocean from high-standing islands. <i>Geology</i> , 2002 , 30, 443	5	147
60	The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica. <i>International Journal of Astrobiology</i> , 2002 , 1, 401-413	1.4	6
59	Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986\(\mathbb{Q}\)000. <i>Journal of Geophysical Research</i> , 2002 , 107, ACL 13-1		328
58	Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. <i>Water Resources Research</i> , 2002 , 38, 15-1-15-17	5.4	120
57	Trace metal fluxes to the ocean: The importance of high-standing oceanic islands. <i>Geophysical Research Letters</i> , 2002 , 29, 14-1-14-4	4.9	25
56	CO2 concentrations in perennially ice-covered lakes of Taylor Valley, Antarctica. <i>Biogeochemistry</i> , 2001 , 56, 27-50	3.8	13
55	Ground water/surface water interactions in Lake Naivasha, Kenya, using delta 18O, delta D, and 3H/3He age-dating. <i>Ground Water</i> , 2001 , 39, 526-33	2.4	38
54	Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). <i>Bulletin of the Geological Society of America</i> , 2001 , 113, 1401-1408	3.9	69
53	The Mcmurdo Dry Valleys Long-Term Ecological Rsearch Program: New understanding of the biogeochemistry of the Dry Valley Lakes: A review 1 This work was supported by the following NSF grants: OPP-9211773 and OPP-9813061. We thank our colleagues Andrew Fountain, Ross Virginia,	2.2	16
52	Oxyanion Concentrations in Eastern Sierra Nevada Rivers B. Boron, Molybdenum, Vanadium, and Tungsten. <i>Aquatic Geochemistry</i> , 2000 , 6, 19-46	1.7	46
51	Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. <i>Journal of Hydrology</i> , 2000 , 230, 34-54	6	44
50	Fossil Fuel Burning in Taylor Valley, Southern Victoria Land, Antarctica: Estimating the Role of Scientific Activities on Carbon and Nitrogen Reservoirs and Fluxes. <i>Environmental Science & amp; Technology</i> , 2000 , 34, 1659-1662	10.3	15
49	Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. <i>Science</i> , 1999 , 286, 2141-4	33.3	313
48	Ecological Legacies: Impacts on Ecosystems of the McMurdo Dry Valleys. <i>BioScience</i> , 1999 , 49, 1009-101	3 .7	70
47	Physical Controls on the Taylor Valley Ecosystem, Antarctica. <i>BioScience</i> , 1999 , 49, 961-971	5.7	118

46	Carbon Transformations in a Perennially Ice-Covered Antarctic Lake. <i>BioScience</i> , 1999 , 49, 997-1008	5.7	106
45	Mercury in aquatic systems in Antarctica. <i>Geophysical Research Letters</i> , 1999 , 26, 2235-2238	4.9	22
44	History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data. <i>Geology</i> , 1999 , 27, 527	5	36
43	Lead pollution in Antarctic surface snow revealed along the route of the International Trans-Antarctic Expedition. <i>Annals of Glaciology</i> , 1999 , 29, 94-98	2.5	5
42	Physical Controls on the Taylor Valley Ecosystem, Antarctica. <i>BioScience</i> , 1999 , 49, 961	5.7	117
41	Ecological Legacies: Impacts on Ecosystems of the McMurdo Dry Valleys. <i>BioScience</i> , 1999 , 49, 1009	5.7	46
40	The Hg geochemistry of a geothermal stream, Steamboat Creek, Nevada: natural vs. anthropogenic influences. <i>Environmental Geology</i> , 1998 , 34, 143-150		20
39	Evidence of deep circulation in two perennially ice-covered Antarctic lakes. <i>Limnology and Oceanography</i> , 1998 , 43, 625-635	4.8	13
38	Inorganic carbon-isotope distribution and budget in the Lake Hoare and Lake Fryxell basins, Taylor Valley, Antarctica. <i>Annals of Glaciology</i> , 1998 , 27, 685-689	2.5	7
37	Lithium in waters of a polar desert. <i>Geochimica Et Cosmochimica Acta</i> , 1997 , 61, 4309-4319	5.5	25
36	Strontium isotopic geochemistry of the Devils Lake drainage system, North Dakota: a preliminary study and potential paleoclimatic implications. <i>Journal of Paleolimnology</i> , 1997 , 17, 147-154	2.1	3
35	Oxyanion Concentrations in Eastern Sierra Nevada Rivers D. Arsenic and Phosphate. <i>Aquatic Geochemistry</i> , 1997 , 3, 61-97	1.7	7
34	The measurement of reactive silicate in saline-hypersaline lakes: Examples of the problem. <i>International Journal of Salt Lake Research</i> , 1997 , 6, 17-23		
33	Inhibition of mercury methylation in anoxic freshwater sediment by group VI anions. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 1568-1574	3.8	20
32	Inhibition of mercury methylation in anoxic freshwater sediment by group VI anions 1997 , 16, 1568		4
31	Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. <i>Earth and Planetary Science Letters</i> , 1996 , 139, 305-319	5.3	139
30	Mercury concentrations in waters of Lake Naivasha Watershed, Kenya. <i>Geophysical Research Letters</i> , 1996 , 23, 1581-1584	4.9	12
29	Reply to comment on the paper R are earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions\(\mathbb{L}Earth\) and Planetary Science Letters, 1996 , 145, 139-141	5.3	5

28	Observations on the diagenetic behaviour of arsenic in a saline lake: Pyramid Lake, Nevada. <i>International Journal of Salt Lake Research</i> , 1996 , 5, 329-335		3
27	Mercury pathways in the carson riverlahontan reservoir system, nevada, usa. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 677-683	3.8	26
26	. Environmental Toxicology and Chemistry, 1996 , 15, 677	3.8	25
25	Mercury contamination in the Carson River, Nevada: A preliminary study of the impact of mining wastes. <i>Water, Air, and Soil Pollution</i> , 1996 , 92, 391-408	2.6	28
24	The solubility control of rare earth elements in natural terrestrial waters and the significance of PO 3¼ and CO 2⅓ in limiting dissolved rare earth concentrations: A review of recent information. <i>Aquatic Geochemistry</i> , 1995 , 1, 157-173	1.7	67
23	Oxyanion concentrations in eastern Sierra Nevada rivers 1. Selenium. <i>Applied Geochemistry</i> , 1995 , 10, 553-564	3.5	11
22	The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing. <i>Limnology and Oceanography</i> , 1994 , 39, 1141-1154	4.8	119
21	Paleolimnology of the McMurdo Dry Valleys, Antarctica. <i>Journal of Paleolimnology</i> , 1994 , 10, 85-114	2.1	122
20	THE GROUND WATER FLUX OF NITROGEN AND PHOSPHORUS TO BERMUDA'S COASTAL WATERS1. Journal of the American Water Resources Association, 1994 , 30, 983-991	2.1	17
19	Rare earth element concentrations and speciation in alkaline lakes from the western U.S.A <i>Geophysical Research Letters</i> , 1994 , 21, 773-776	4.9	54
18	The geochemical evolution of terrestrial waters in the Antarctic: The role of rock-water interactions. <i>Antarctic Research Series</i> , 1993 , 135-143		17
17	Nitrate concentrations and nitrate reduction in acid groundwater/lake systems in southern Australia. <i>International Journal of Salt Lake Research</i> , 1993 , 2, 173-189		2
16	Geochemistry of surface waters of Vojvodina, Yugoslavia. <i>Journal of Hydrology</i> , 1992 , 137, 33-55	6	16
15	A chemical model for the evolution of Australian sodium chloride lake brines. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1991 , 84, 43-53	2.9	31
14	A co-precipitation technique for determining trace metal concentrations in iron-rich saline solutions. <i>Environmental Technology (United Kingdom)</i> , 1990 , 11, 141-144	2.6	17
13	Acid groundwater. <i>Eos</i> , 1989 , 70, 851	1.5	1
12	Measurement of organic carbon in polar snow samples. <i>Nature</i> , 1986 , 320, 156-158	50.4	29
11	Glaciochemical Studies and Estimated Net Mass Balances for Rennick Glacier Area, Antarctica. <i>Annals of Glaciology</i> , 1985 , 7, 1-6	2.5	15

10	A preliminary study of the sedimentary history of Lake Vanda, Antarctica: Climatic implications. <i>New Zealand Journal of Marine and Freshwater Research</i> , 1985 , 19, 253-260	1.3	6
9	Calcification of cyanobacterial mats in Solar Lake, Sinai. <i>Geology</i> , 1984 , 12, 623	5	60
8	Microbial activity and bioturbation-induced oscillations in pore water chemistry of estuarine sediments in spring. <i>Nature</i> , 1982 , 299, 433-435	50.4	42
7	The legacy of aqueous environments on soils of the McMurdo Dry Valleys: contexts for future exploration of martian soils78-109		3
6	Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica221-257		16
5	Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change9-77		4
4	Antarctic McMurdo Dry Valley stream ecosystems as analog to fluvial systems on Mars139-159		2
3	Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environme	ents160)-1694
2	The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?19	95-220	7
1	Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. <i>Annals of Glaciology</i> ,1-13	2.5	12