
## Rajeev Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3900708/publications.pdf

Version: 2024-02-01



PAIEEV CUDTA

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Molecular Assemblies Offering Hydrogen-Bonding Cavities: Influence of Macrocyclic Cavity and<br>Hydrogen Bonding on Dye Adsorption. Inorganic Chemistry, 2022, 61, 3616-3630.                                                          | 4.0 | 9         |
| 2  | Turn-on fluorescent detection of nickel and zinc ions by two related chemosensors containing naphthalimide ring(s). Journal of Molecular Structure, 2022, 1261, 132901.                                                                | 3.6 | 17        |
| 3  | Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.                                         | 4.0 | 12        |
| 4  | Sensing and formation of a stable gel in the presence of picric acid by a<br>low-molecular-weight-gelator. Journal of the Indian Chemical Society, 2022, 99, 100521.                                                                   | 2.8 | 2         |
| 5  | Effect of pyridyl donors from organic ligands <i>versus</i> metalloligands on material design.<br>Inorganic Chemistry Frontiers, 2021, 8, 1334-1373.                                                                                   | 6.0 | 18        |
| 6  | Turn-on detection of assorted phosphates by luminescent chemosensors. Inorganic Chemistry<br>Frontiers, 2021, 8, 3587-3607.                                                                                                            | 6.0 | 25        |
| 7  | Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted<br>Binding and Reduction of Nitro-substrates. Inorganic Chemistry, 2021, 60, 2009-2022.                                                  | 4.0 | 24        |
| 8  | Ruthenium complexes of phosphine–amide based ligands as efficient catalysts for transfer<br>hydrogenation reactions. Dalton Transactions, 2021, 50, 3269-3279.                                                                         | 3.3 | 13        |
| 9  | Bis(μ-thiolato)-dicopper Containing Fully Spin Delocalized Mixed Valence Copper–Sulfur Clusters and<br>Their Electronic Structural Properties with Relevance to the Cu <sub>A</sub> Site. Inorganic<br>Chemistry, 2021, 60, 5779-5790. | 4.0 | 2         |
| 10 | Selective turn-on sensing of fluoroquinolone drugs by zinc complexes of amide-based ligands.<br>Journal of Chemical Sciences, 2021, 133, 1.                                                                                            | 1.5 | 4         |
| 11 | Ruthenium complexes of N/O/S based multidentate ligands: Structural diversities and catalysis perspectives. Journal of Organometallic Chemistry, 2021, 954-955, 122081.                                                                | 1.8 | 12        |
| 12 | Cobalt mediated <i>N</i> -alkylation of amines by alcohols: role of hydrogen bonding pocket.<br>Inorganic Chemistry Frontiers, 2021, 8, 1599-1609.                                                                                     | 6.0 | 20        |
| 13 | Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation.<br>Dalton Transactions, 2021, 50, 14951-14966.                                                                                   | 3.3 | 7         |
| 14 | Selective Detection of Picric Acid and Pyrosulfate Ion by Nickel Complexes Offering a<br>Hydrogen-Bonding-Based Cavity. Inorganic Chemistry, 2021, 60, 17889-17899.                                                                    | 4.0 | 18        |
| 15 | Ruthenium(II) complexes of pyridine-carboxamide ligands bearing appended<br>benzothiazole/benzimidazole rings: Structural diversity and catalysis. Inorganica Chimica Acta, 2020,<br>502, 119285.                                      | 2.4 | 18        |
| 16 | Systematic Design of a Low-Molecular-Weight Gelator and Its Application in the Sensing and Retention of Residual Antibiotics. Crystal Growth and Design, 2020, 20, 6117-6128.                                                          | 3.0 | 26        |
| 17 | Detection of Al <sup>3+</sup> and Fe <sup>3+</sup> ions by nitrobenzoxadiazole bearing<br>pyridine-2,6-dicarboxamide based chemosensors: effect of solvents on detection. New Journal of<br>Chemistry, 2020, 44, 13285-13294.          | 2.8 | 23        |
| 18 | Design and synthesis of new functionalized 8-(thiophen-2-yl)-1,2,3,4-tetrahydroquinolines as turn-off<br>chemosensors for selective recognition of Pd <sup>2+</sup> ions. New Journal of Chemistry, 2020, 44,<br>15559-15566.          | 2.8 | 9         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dipicolinamide and isophthalamide based fluorescent chemosensors: recognition and detection of assorted analytes. Dalton Transactions, 2020, 49, 9544-9555.                                                                        | 3.3 | 17        |
| 20 | Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands. Dalton Transactions, 2020, 49, 14731-14748.                                                      | 3.3 | 14        |
| 21 | Turn-On Fluorescent Sensors for the Selective Detection of Al <sup>3+</sup> (and Ga <sup>3+</sup> )<br>and PPi lons. Inorganic Chemistry, 2019, 58, 10364-10376.                                                                   | 4.0 | 86        |
| 22 | Zn―and Cdâ€based Coordination Polymers Offering Hâ€Bonding Cavities: Highly Selective Sensing of<br>S <sub>2</sub> O <sub>7</sub> <sup>2â^'</sup> and Fe <sup>3+</sup> lons. Chemistry - an Asian Journal,<br>2019, 14, 4594-4600. | 3.3 | 20        |
| 23 | Selective sensing of ATP by hydroxide-bridged dizinc(ii) complexes offering a hydrogen bonding cavity.<br>Dalton Transactions, 2019, 48, 14737-14747.                                                                              | 3.3 | 24        |
| 24 | Two Hg(II)-Based Macrocycles Offering Hydrogen Bonding Cavities: Influence of Cavity Structure on Heterogeneous Catalysis. Crystal Growth and Design, 2019, 19, 6039-6047.                                                         | 3.0 | 14        |
| 25 | Oxo-bridged trinuclear and tetranuclear manganese complexes supported with nitrogen donor ligands: syntheses, structures and properties. Dalton Transactions, 2019, 48, 7918-7927.                                                 | 3.3 | 7         |
| 26 | Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.                                            | 3.0 | 7         |
| 27 | Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly<br>Formation. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1413-1430.                                                           | 2.8 | 5         |
| 28 | Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles. Inorganic Chemistry, 2018, 57, 1693-1697.                                                                                                            | 4.0 | 44        |
| 29 | Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts. Dalton Transactions, 2018, 47, 16985-16994.                                                                          | 3.3 | 15        |
| 30 | Polymerization led selective detection and removal of Zn <sup>2+</sup> and Cd <sup>2+</sup> ions:<br>isolation of Zn- and Cd-MOFs and reversibility studies. Dalton Transactions, 2018, 47, 14686-14695.                           | 3.3 | 21        |
| 31 | A metalloligand appended with benzimidazole rings: tetranuclear [CoZn <sub>3</sub> ] and<br>[CoCd <sub>3</sub> ] complexes and their catalytic applications. New Journal of Chemistry, 2018, 42,<br>9847-9856.                     | 2.8 | 18        |
| 32 | Coordination driven architectures based on metalloligands offering appended carboxylic acid groups. Journal of Chemical Sciences, 2018, 130, 1.                                                                                    | 1.5 | 6         |
| 33 | Ag-Based Coordination Polymers Based on Metalloligands and Their Catalytic Performance in<br>Multicomponent A <sup>3</sup> -Coupling Reactions. Crystal Growth and Design, 2018, 18, 5501-5511.                                    | 3.0 | 25        |
| 34 | Detection of sulfide ion and gaseous H <sub>2</sub> S using a series of pyridine-2,6-dicarboxamide based scaffolds. Dalton Transactions, 2018, 47, 9536-9545.                                                                      | 3.3 | 30        |
| 35 | Selective fluorescent turn-off sensing of Pd <sup>2+</sup> ion: applications as paper strips, polystyrene films, and in cell imaging. RSC Advances, 2017, 7, 7734-7741.                                                            | 3.6 | 46        |
| 36 | Hydroxide-bridged dicopper complexes: the influence of secondary coordination sphere on structure and catecholase activity. Dalton Transactions, 2017, 46, 4617-4627.                                                              | 3.3 | 28        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fluorescent detection of multiple ions by two related chemosensors: structural elucidations and logic gate applications. RSC Advances, 2017, 7, 23127-23135.                                                                                                                 | 3.6 | 21        |
| 38 | Lanthanide-Based Coordination Polymers for the Size-Selective Detection of Nitroaromatics. Crystal Growth and Design, 2017, 17, 3907-3916.                                                                                                                                   | 3.0 | 45        |
| 39 | Cobalt complexes of pyrrolecarboxamide ligands as catalysts in nitro reduction reactions: influence of electronic substituents on catalysis and mechanistic insights. Inorganic Chemistry Frontiers, 2017, 4, 324-335.                                                       | 6.0 | 15        |
| 40 | Carbon-sulphur cross coupling reactions catalyzed by nickel-based coordination polymers based on metalloligands. Dalton Transactions, 2017, 46, 15023-15031.                                                                                                                 | 3.3 | 19        |
| 41 | Cobalt Complexes Catalyze Reduction of Nitro Compounds: Mechanistic Studies. ChemistrySelect, 2017, 2, 8197-8206.                                                                                                                                                            | 1.5 | 14        |
| 42 | Detection of the anticoagulant drug warfarin by palladium complexes. Dalton Transactions, 2017, 46, 10205-10209.                                                                                                                                                             | 3.3 | 21        |
| 43 | Cobalt Complexes Offering Aryldicarboxylic Acid Groups: Hydrogen Bonding Assemblies and the Resultant Topologies. ChemistrySelect, 2016, 1, 6167-6178.                                                                                                                       | 1.5 | 4         |
| 44 | A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses,<br>Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2016, 16, 2874-2886.                                                                            | 3.0 | 37        |
| 45 | Metalloligands to material: design strategies and network topologies. CrystEngComm, 2016, 18, 9185-9208.                                                                                                                                                                     | 2.6 | 33        |
| 46 | The wonderful world of pyridine-2,6-dicarboxamide based scaffolds. Dalton Transactions, 2016, 45, 18769-18783.                                                                                                                                                               | 3.3 | 51        |
| 47 | Lanthanide-based coordination polymers as promising heterogeneous catalysts for ring-opening reactions. RSC Advances, 2016, 6, 21352-21361.                                                                                                                                  | 3.6 | 32        |
| 48 | Chemosensors containing appended benzothiazole group(s): selective binding of Cu <sup>2+</sup> and<br>Zn <sup>2+</sup> ions by two related receptors. Dalton Transactions, 2016, 45, 502-507.                                                                                | 3.3 | 56        |
| 49 | Manganese Complexes of Pyrrole―and Âŀndolecarboxamide Ligands: Synthesis, Structure,<br>Electrochemistry, and Applications in Oxidative and Lewisâ€Acidâ€ÂAssisted Catalysis. European Journal of<br>Inorganic Chemistry, 2015, 2015, 5534-5544.                             | 2.0 | 9         |
| 50 | A Metalloligand Appended with Thiazole Rings: Heterometallic {Co <sup>3+</sup> –Zn <sup>2+</sup> }<br>and {Co <sup>3+</sup> –Cd <sup>2+</sup> } Complexes and Their Heterogeneous Catalytic Applications.<br>European Journal of Inorganic Chemistry, 2015, 2015, 1022-1032. | 2.0 | 21        |
| 51 | Pd( <scp>ii</scp> ) complexes with amide-based macrocycles: syntheses, properties and applications in cross-coupling reactions. New Journal of Chemistry, 2015, 39, 2042-2051.                                                                                               | 2.8 | 22        |
| 52 | Manganese- and Cobalt-Based Coordination Networks as Promising Heterogeneous Catalysts for<br>Olefin Epoxidation Reactions. Inorganic Chemistry, 2015, 54, 2603-2615.                                                                                                        | 4.0 | 33        |
| 53 | Three-Dimensional Heterometallic Coordination Networks: Syntheses, Crystal Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2015, 15, 4110-4122.                                                                                              | 3.0 | 23        |
| 54 | Trinuclear {Co <sup>2+</sup> –M <sup>3+</sup> –Co <sup>2+</sup> } complexes catalyze reduction of nitro compounds. Dalton Transactions, 2015, 44, 17453-17461.                                                                                                               | 3.3 | 26        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Heterometallic coordination polymers: syntheses, structures and heterogeneous catalytic applications. New Journal of Chemistry, 2015, 39, 9772-9781.                                                                                                               | 2.8  | 28        |
| 56 | Probing the Mechanism of Fluorescence Quenching of QDs by Co(III)-Complexes: Size of QD and Nature of the Complex Both Dictate Energy and Electron Transfer Processes. Journal of Physical Chemistry C, 2015, 119, 22690-22699.                                    | 3.1  | 52        |
| 57 | Arene-based fluorescent probes for the selective detection of iron. RSC Advances, 2015, 5, 97874-97882.                                                                                                                                                            | 3.6  | 68        |
| 58 | Asymmetrical metalloligands based {Co3+–Cd2+} and {Co3+–Ag+} coordination polymers: Syntheses and characterization. Inorganica Chimica Acta, 2015, 425, 260-268.                                                                                                   | 2.4  | 14        |
| 59 | Endogenous and Exogenous Ligandâ€Dependent Formation of a Superoxideâ€Bridged Dicobalt(III) Complex<br>and Mononuclear Co <sup>III</sup> Complexes with Amideâ€Based Macrocyclic Ligands. European<br>Journal of Inorganic Chemistry, 2014, 2014, 5567-5576.       | 2.0  | 8         |
| 60 | Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Journal of Chemical Sciences, 2014, 126, 1535-1546.                                                                                                      | 1.5  | 12        |
| 61 | {Cu2+-Co3+-Cu2+} and {Cu2+-Fe3+-Cu2+} Heterobimetallic Complexes and Their Catalytic Properties.<br>European Journal of Inorganic Chemistry, 2014, 2014, 2113-2123.                                                                                                | 2.0  | 32        |
| 62 | Nickel and Copper Complexes of Pyrrolecarboxamide Ligands – Stabilization of M <sup>3+</sup><br>Species and Isolation of Ni <sup>3+</sup> Complexes. European Journal of Inorganic Chemistry, 2014,<br>2014, 4957-4965.                                            | 2.0  | 15        |
| 63 | Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. Journal of Chemical Sciences, 2014, 126, 1091-1105.                                                                       | 1.5  | 24        |
| 64 | Two-Dimensional {Co3+-Co2+} and {Fe3+-Co2+} Networks and Their Heterogeneous Catalytic Activities.<br>European Journal of Inorganic Chemistry, 2014, 2014, 4966-4974.                                                                                              | 2.0  | 23        |
| 65 | Supramolecular architectures with pyridine-amide based ligands: discrete molecular assemblies and their applications. Dalton Transactions, 2014, 43, 7668-7682.                                                                                                    | 3.3  | 70        |
| 66 | Mononuclear complexes of amide-based ligands containing appended functional groups: role of secondary coordination spheres on catalysis. Dalton Transactions, 2014, 43, 14865-14875.                                                                               | 3.3  | 38        |
| 67 | Molecularly designed architectures – the metalloligand way. Chemical Society Reviews, 2013, 42, 9403.                                                                                                                                                              | 38.1 | 218       |
| 68 | Three-Dimensional {Co <sup>3+</sup> –Zn <sup>2+</sup> } and {Co <sup>3+</sup> –Cd <sup>2+</sup> }<br>Networks Originated from Carboxylate-rich Building Blocks: Syntheses, Structures, and<br>Heterogeneous Catalysis. Inorganic Chemistry, 2013, 52, 10773-10787. | 4.0  | 66        |
| 69 | Cobalt Complexes Appended with <i>para</i> and <i>meta</i> -Arylcarboxylic Acids: Influence of<br>Cation, Solvent, and Symmetry on Hydrogen-Bonded Assemblies. Crystal Growth and Design, 2013, 13,<br>74-90.                                                      | 3.0  | 34        |
| 70 | Co3+-Based Building Blocks with Appended Phenol and Catechol Groups: Examples of Placing<br>Hydrogen-Bond Donors and Acceptors in a Single Molecule. Crystal Growth and Design, 2012, 12,<br>1308-1319.                                                            | 3.0  | 49        |
| 71 | A novel Co3+-based asymmetrical building block: Heterobimetallic metallacycles versus coordination networks. Inorganic Chemistry Communication, 2012, 23, 103-108.                                                                                                 | 3.9  | 22        |
| 72 | Synthesis and Properties of Dinuclear μâ€Oxodiiron(III) Complexes of Amideâ€Based Macrocyclic Ligands.<br>European Journal of Inorganic Chemistry, 2012, 2012, 5525-5533.                                                                                          | 2.0  | 7         |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Cobalt Complexes Appended with <i>p</i> - and <i>m</i> -Carboxylates: Two Unique<br>{Co <sup>3+</sup> –Cd <sup>2+</sup> } Networks and Their Regioselective and Size-Selective<br>Heterogeneous Catalysis. Inorganic Chemistry, 2012, 51, 5497-5499.             | 4.0  | 49        |
| 74 | Two-dimensional {Co3+–Zn2+} and {Co3+–Cd2+} networks and their applications in heterogeneous and solvent-free ring opening reactions. Dalton Transactions, 2011, 40, 12454.                                                                                      | 3.3  | 43        |
| 75 | Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies. Journal of Chemical Sciences, 2010, 122, 311-320.                                                                                                    | 1.5  | 12        |
| 76 | The Effect of Ligand Architecture on the Structure and Properties of Nickel and Copper Complexes of Amideâ€Based Macrocycles. European Journal of Inorganic Chemistry, 2010, 2010, 621-636.                                                                      | 2.0  | 19        |
| 77 | Copper(I) in the Cleft: Syntheses, Structures and Catalytic Properties of {Cu+-Co3+-Cu+} and<br>{Cu+-Fe3+-Cu+} Heterobimetallic Complexes. European Journal of Inorganic Chemistry, 2010, 2010,<br>4546-4554.                                                    | 2.0  | 42        |
| 78 | Synthesis, Structures, and Heterogeneous Catalytic Applications of<br>{Co <sup>3+</sup> –Eu <sup>3+</sup> } and {Co <sup>3+</sup> –Tb <sup>3+</sup> } Heterodimetallic<br>Coordination Polymers. European Journal of Inorganic Chemistry, 2010, 2010, 5103-5112. | 2.0  | 48        |
| 79 | Cobalt complexes as the building blocks: {Co3+–Zn2+} heterobimetallic networks and their properties. Dalton Transactions, 2010, 39, 8135.                                                                                                                        | 3.3  | 56        |
| 80 | Mononuclear and Dinuclear Nilland CullComplexes with a Pyrrolecarboxamide Ligand: Core<br>Conversions and Unusual Presence of a Dimer and Two Monomers in the Same Unit Cell. European<br>Journal of Inorganic Chemistry, 2009, 2009, 3259-3265.                 | 2.0  | 14        |
| 81 | Cobalt Complex as Building Blocks: Synthesis, Characterization, and Catalytic Applications of<br>{Cd2+â``Co3+â``Cd2+} and {Hg2+â``Co3+â``Hg2+} Heterobimetallic Complexes. Inorganic Chemistry, 2009, 48,<br>5234-5243.                                          | 4.0  | 65        |
| 82 | Studies on Nickel(II) Complexes with Amideâ€Based Ligands: Syntheses, Structures, Electrochemistry and Oxidation Chemistry. European Journal of Inorganic Chemistry, 2008, 2008, 2052-2063.                                                                      | 2.0  | 29        |
| 83 | Synthesis, characterization and antibacterial activity of cobalt(III) complexes with pyridine–amide<br>ligands. European Journal of Medicinal Chemistry, 2008, 43, 2189-2196.                                                                                    | 5.5  | 114       |
| 84 | Cobalt Coordination Induced Functionalized Molecular Clefts:  Isolation of {CoIIIâ^ZnII}<br>Heterometallic Complexes and Their Applications in Beckmann Rearrangement Reactions. Inorganic<br>Chemistry, 2008, 47, 154-161.                                      | 4.0  | 91        |
| 85 | Effect of Ligand Architecture on the Structure and Properties of Square-Planar Nickel(II) Complexes of Amide-Based Macrocycles. European Journal of Inorganic Chemistry, 2007, 2007, 3247-3259.                                                                  | 2.0  | 25        |
| 86 | Monomeric MnIII/IIand FeIII/IIComplexes with Terminal Hydroxo and Oxo Ligands:Â Probing Reactivity via<br>Oâ^'H Bond Dissociation Energies. Journal of the American Chemical Society, 2003, 125, 13234-13242.                                                    | 13.7 | 159       |
| 87 | Isolation of Monomeric MnIII/IIâ^'OH and MnIIIâ^'O Complexes from Water:Â Evaluation of Oâ^'H Bond<br>Dissociation Energies. Journal of the American Chemical Society, 2002, 124, 1136-1137.                                                                     | 13.7 | 81        |
| 88 | Synthesis and Characterization of Completely Delocalized Mixed-Valent Dicopper Complexes.<br>Inorganic Chemistry, 2002, 41, 5100-5106.                                                                                                                           | 4.0  | 63        |
| 89 | Tailored Inorganicâ€Organic Architectures via Metalloligands. Chemical Record, 0, , .                                                                                                                                                                            | 5.8  | 1         |