Marc Y Donath

List of Publications by Citations

Source: https://exaly.com/author-pdf/3900675/marc-y-donath-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

98 107 13,934 44 h-index g-index citations papers 16,182 6.77 107 13.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
98	Type 2 diabetes as an inflammatory disease. <i>Nature Reviews Immunology</i> , 2011 , 11, 98-107	36.5	2207
97	Interleukin-1-receptor antagonist in type 2 diabetes mellitus. <i>New England Journal of Medicine</i> , 2007 , 356, 1517-26	59.2	1355
96	Glucose-induced Itell production of IL-1Itontributes to glucotoxicity in human pancreatic islets. Journal of Clinical Investigation, 2002, 110, 851-860	15.9	846
95	Effect of interleukin-10nhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. <i>Lancet, The,</i> 2017 , 390, 1833-1842	40	634
94	Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. <i>Nature Medicine</i> , 2011 , 17, 1481-9	50.5	581
93	Increased number of islet-associated macrophages in type 2 diabetes. <i>Diabetes</i> , 2007 , 56, 2356-70	0.9	515
92	Targeting inflammation in the treatment of type 2 diabetes: time to start. <i>Nature Reviews Drug Discovery</i> , 2014 , 13, 465-76	64.1	465
91	Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. <i>Journal of Clinical Investigation</i> , 2002 , 110, 851-60	15.9	439
90	Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. <i>Lancet, The</i> , 2018 , 391, 319-328	40	430
89	Mechanisms of beta-cell death in type 2 diabetes. <i>Diabetes</i> , 2005 , 54 Suppl 2, S108-13	0.9	339
88	Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. <i>Journal of Molecular Medicine</i> , 2003 , 81, 455-70	5.5	330
87	Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. <i>Diabetes Care</i> , 2009 , 32, 1663-8	14.6	313
86	A guiding map for inflammation. <i>Nature Immunology</i> , 2017 , 18, 826-831	19.1	284
85	Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. <i>Endocrinology</i> , 2009 , 150, 5218-29	4.8	244
84	Islet inflammation in type 2 diabetes: from metabolic stress to therapy. <i>Diabetes Care</i> , 2008 , 31 Suppl 2, S161-4	14.6	240
83	Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4065-74	5.6	239
82	Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. <i>Lancet, The</i> , 2013 , 381, 1905-15	40	234

(2013-2013)

81	Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. <i>Cell Metabolism</i> , 2013 , 17, 860-872	24.6	222
80	Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. <i>Physiology</i> , 2009 , 24, 325-31	9.8	218
79	Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 8138-	4 ³ 1.5	211
78	Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. <i>Diabetes Care</i> , 2012 , 35, 1654-62	14.6	205
77	Postprandial macrophage-derived IL-1lstimulates insulin, and both synergistically promote glucose disposal and inflammation. <i>Nature Immunology</i> , 2017 , 18, 283-292	19.1	194
76	Interleukin-6 regulates pancreatic alpha-cell mass expansion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13163-8	11.5	193
75	Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. <i>Diabetologia</i> , 2010 , 53, 1795-806	10.3	172
74	Cytokines and beta-cell biology: from concept to clinical translation. <i>Endocrine Reviews</i> , 2008 , 29, 334-5	5027.2	171
73	Anti-Inflammatory Therapy With Canakinumab for the Prevention and Management of Diabetes. Journal of the American College of Cardiology, 2018 , 71, 2392-2401	15.1	170
72	Cytokine production by islets in health and diabetes: cellular origin, regulation and function. <i>Trends in Endocrinology and Metabolism</i> , 2010 , 21, 261-7	8.8	166
71	Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. <i>Diabetes</i> , 2006 , 55, 2713-22	0.9	139
70	Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications. <i>Diabetes Care</i> , 2016 , 39 Suppl 2, S244-52	14.6	134
69	FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 8236-41	11.5	122
68	Targeting innate immune mediators in type 1 and type 2 diabetes. <i>Nature Reviews Immunology</i> , 2019 , 19, 734-746	36.5	117
67	The IL-1 Pathway in Type 2 Diabetes and Cardiovascular Complications. <i>Trends in Endocrinology and Metabolism</i> , 2015 , 26, 551-563	8.8	112
66	Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production. <i>Immunity</i> , 2017 , 47, 928-942.e7	32.3	86
65	The Role of Inflammation in Etell Dedifferentiation. Scientific Reports, 2017, 7, 6285	4.9	84
64	Identification of a SIRT1 mutation in a family with type 1 diabetes. <i>Cell Metabolism</i> , 2013 , 17, 448-455	24.6	83

63	SAT-382 Glucocorticoid Tapering in Monthly 1-mg Decrements Does Not Result in Clinically Manifest Adrenal Insufficiency in Patients with Rheumatoid Arthritis: Learnings from the Phase 3/4 SEMIRA Study. <i>Journal of the Endocrine Society</i> , 2019 , 3,	0.4	78
62	SAT-059 Treatment Of Primary Aldosteronism With The mTORC1 Inhibitor Everolimus. <i>Journal of the Endocrine Society</i> , 2019 , 3,	0.4	78
61	SAT-066 Effect Of Interleukin-1-receptor Antagonist On Hemodynamics And Renin-angiotensin-aldosterone System In Obese Individuals. <i>Journal of the Endocrine Society</i> , 2019 , 3,	0.4	78
60	Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. <i>Archives of Physiology and Biochemistry</i> , 2009 , 115, 240-7	2.2	73
59	Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. <i>Diabetologia</i> , 2016 , 59, 679-82	10.3	70
58	The Fas pathway is involved in pancreatic beta cell secretory function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 2861-6	11.5	64
57	Pancreatic ICell-Derived Glucagon-Related Peptides Are Required for ICell Adaptation and Glucose Homeostasis. <i>Cell Reports</i> , 2017 , 18, 3192-3203	10.6	60
56	GLP-1 effects on islets: hormonal, neuronal, or paracrine?. <i>Diabetes Care</i> , 2013 , 36 Suppl 2, S145-8	14.6	51
55	Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets viaInterleukin 6, Produced by ICells. <i>Gastroenterology</i> , 2016 , 151, 165-79	13.3	49
54	Characteristics of a multisensor system for non invasive glucose monitoring with external validation and prospective evaluation. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3794-800	11.8	44
53	Development of an Interleukin-1 Daccine in Patients with Type 2 Diabetes. <i>Molecular Therapy</i> , 2016 , 24, 1003-12	11.7	43
52	Inhibition of IL-1beta improves fatigue in type 2 diabetes. <i>Diabetes Care</i> , 2011 , 34, e158	14.6	43
51	Angiotensin II induces interleukin-1Emediated islet inflammation and Etell dysfunction independently of vasoconstrictive effects. <i>Diabetes</i> , 2015 , 64, 1273-83	0.9	38
50	Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. <i>Endocrine Reviews</i> , 2019 , 40, 1080-1091	27.2	38
49	©ell-Specific Deletion of the IL-1 Receptor Antagonist Impairs ©ell Proliferation and Insulin Secretion. <i>Cell Reports</i> , 2018 , 22, 1774-1786	10.6	37
48	Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2014 , 306, R861-7	3.2	36
47	What is the role of autoimmunity in type 1 diabetes? A clinical perspective. <i>Diabetologia</i> , 2014 , 57, 653-	510.3	31
46	Type 1, type 1.5, and type 2 diabetes: NOD the diabetes we thought it was. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12217-8	11.5	31

(2015-2011)

45	Inflammation as a sensor of metabolic stress in obesity and type 2 diabetes. <i>Endocrinology</i> , 2011 , 152, 4005-6	4.8	29
44	Susceptibility to fatty acid-induced Etell dysfunction is enhanced in prediabetic diabetes-prone biobreeding rats: a potential link between Etell lipotoxicity and islet inflammation. <i>Endocrinology</i> , 2013 , 154, 89-101	4.8	28
43	Inflammation in obesity, diabetes, and related disorders Immunity, 2022, 55, 31-55	32.3	28
42	IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion. <i>Diabetes</i> , 2018 , 67, 36-45	0.9	27
41	Fractalkine (CX3CL1), a new factor protecting Eells against TNF Molecular Metabolism, 2014, 3, 731-41	8.8	23
40	Successful Treatment of Immune Checkpoint Inhibitor-Induced Diabetes With Infliximab. <i>Diabetes Care</i> , 2019 , 42, e153-e154	14.6	22
39	IL-1 Antagonism in Men With Metabolic Syndrome and Low Testosterone: A Randomized Clinical Trial. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2018 , 103, 3466-3476	5.6	21
38	Continuing versus tapering glucocorticoids after achievement of low disease activity or remission in rheumatoid arthritis (SEMIRA): a double-blind, multicentre, randomised controlled trial. <i>Lancet, The</i> , 2020 , 396, 267-276	40	20
37	Distinct Transcriptional Responses across Tissue-Resident Macrophages to Short-Term and Long-Term Metabolic Challenge. <i>Cell Reports</i> , 2020 , 30, 1627-1643.e7	10.6	19
36	GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. <i>Diabetologia</i> , 2020 , 63, 362-373	10.3	19
35	The Effect of a Global, Subject, and Device-Specific Model on a Noninvasive Glucose Monitoring Multisensor System. <i>Journal of Diabetes Science and Technology</i> , 2015 , 9, 865-72	4.1	18
34	First Experiences With a Wearable Multisensor Device in a Noninvasive Continuous Glucose Monitoring Study at Home, Part II: The Investigators' View. <i>Journal of Diabetes Science and Technology</i> , 2018 , 12, 554-561	4.1	18
33	Infliximab in the treatment of Crohn disease and type 1 diabetes. <i>Diabetes Care</i> , 2013 , 36, e90-1	14.6	17
32	Interleukin-1 Antagonism Decreases Cortisol Levels in Obese Individuals. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2017 , 102, 1712-1718	5.6	16
31	Safety, pharmacokinetics, and preliminary efficacy of a specific anti-IL-1alpha therapeutic antibody (MABp1) in patients with type 2 diabetes mellitus. <i>Journal of Diabetes and Its Complications</i> , 2015 , 29, 955-60	3.2	15
30	Proteomic Landscape of Aldosterone-Producing Adenoma. <i>Hypertension</i> , 2019 , 73, 469-480	8.5	14
29	First Experiences With a Wearable Multisensor in an Outpatient Glucose Monitoring Study, Part I: The Users' View. <i>Journal of Diabetes Science and Technology</i> , 2018 , 12, 562-568	4.1	13
28	Interleukin-1 receptor antagonist: friend or foe to the heart?. <i>Lancet Diabetes and Endocrinology,the</i> , 2015 , 3, 228-9	18.1	13

27	A role for interleukin-22 in the alleviation of metabolic syndrome. <i>Nature Medicine</i> , 2014 , 20, 1379-81	50.5	13
26	Inhibition of IL-1beta improves Glycaemia in a Mouse Model for Gestational Diabetes. <i>Scientific Reports</i> , 2020 , 10, 3035	4.9	10
25	Exercise upregulates copeptin levels which is not regulated by interleukin-1. <i>PLoS ONE</i> , 2019 , 14, e0217	78,0,10	9
24	Postprandial Hypoglycemia in Patients after Gastric Bypass Surgery Is Mediated by Glucose-Induced IL-1 (Induced Metabolism, 2020 , 31, 699-709.e5	24.6	9
23	Targeting 12-lipoxygenase as a novel strategy to combat the effects of inflammation on beta cells in diabetes. <i>Diabetologia</i> , 2015 , 58, 425-8	10.3	9
22	The role of IL-1 in postprandial fatigue. <i>Molecular Metabolism</i> , 2018 , 12, 107-112	8.8	8
21	IL-1[activation as a response to metabolic disturbances. Cell Metabolism, 2010, 12, 427-8	24.6	7
20	IL (Interleukin)-1 Receptor Antagonist Increases Ang (Angiotensin [1-7]) and Decreases Blood Pressure in Obese Individuals. <i>Hypertension</i> , 2020 , 75, 1455-1463	8.5	7
19	Glucose or Insulin, Which Is the Culprit in Patients with COVID-19 and Diabetes?. <i>Cell Metabolism</i> , 2021 , 33, 2-4	24.6	7
18	IKKIInhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents. <i>Diabetologia</i> , 2017 , 60, 2021-2032	10.3	6
17	Muscle-Derived IL-6 Is Not Regulated by IL-1 during Exercise. A Double Blind, Placebo-Controlled, Randomized Crossover Study. <i>PLoS ONE</i> , 2015 , 10, e0139662	3.7	5
16	Evidence for cephalic phase insulin release in humans: A systematic review and meta-analysis. <i>Appetite</i> , 2020 , 155, 104792	4.5	5
15	Switch-to-Semaglutide Study (STS-Study): a Retrospective Cohort Study. <i>Diabetes Therapy</i> , 2021 , 12, 943-954	3.6	5
14	Insulin-like growth factor I: an attractive option for chronic heart failure?. <i>Drugs and Aging</i> , 1999 , 15, 251-4	4:7	4
13	OP0030 RANDOMIZED CONTROLLED 24-WEEK TRIAL EVALUATING THE SAFETY AND EFFICACY OF BLINDED TAPERING VERSUS CONTINUATION OF LONG-TERM PREDNISONE (5 MG/D) IN PATIENTS WITH RHEUMATOID ARTHRITIS WHO ACHIEVED LOW DISEASE ACTIVITY OR REMISSION ON		4
12	TOCILIZUMAB 2019, Multisensor Concept for non-invasive Physiological Monitoring. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007,		3
11	Effects of interleukin-1 antagonism on cortisol levels in individuals with obesity: a randomized clinical trial. <i>Endocrine Connections</i> , 2019 , 8, 701-708	3.5	3
10	Treatment of Primary Aldosteronism With mTORC1 Inhibitors. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2019 , 104, 4703-4714	5.6	2

LIST OF PUBLICATIONS

9	Response to Comment on Trinh et al. Successful Treatment of Immune Checkpoint Inhibitor-Induced Diabetes With Infliximab. Diabetes Care 2019;42:e153-e154. <i>Diabetes Care</i> , 2020 , 43, e11	14.6	2	
8	Exercise and the dipeptidyl-peptidase IV inhibitor sitagliptin do not improve beta-cell function and glucose homeostasis in long-lasting type 1 diabetes-A randomised open-label study. <i>Endocrinology, Diabetes and Metabolism,</i> 2019 , 2, e00075	2.7	2	
7	IL-1beta promotes the age-associated decline of beta cell function. <i>IScience</i> , 2021 , 24, 103250	6.1	1	
6	IL-6 Receptor Blockade Increases Circulating Adiponectin Levels in People with Obesity: An Explanatory Analysis. <i>Metabolites</i> , 2021 , 11,	5.6	1	
5	Predictors of Postprandial Hypoglycemia After Gastric Bypass Surgery: a Retrospective Case-Control Study. <i>Obesity Surgery</i> , 2021 , 31, 2497-2502	3.7	1	
4	Patient involvement to inform the design of a clinical trial in postbariatric hypoglycaemia. <i>BMC Medical Research Methodology</i> , 2020 , 20, 290	4.7	О	
3	Model-Based Assessment of C-Peptide Secretion and Kinetics in Post Gastric Bypass Individuals Experiencing Postprandial Hyperinsulinemic Hypoglycemia. <i>Frontiers in Endocrinology</i> , 2021 , 12, 611253	5.7	О	
2	Designer cytokine for the treatment of diabetes. <i>Nature Metabolism</i> , 2019 , 1, 933-934	14.6		
1	LInflammation dans la physiopathologie et le traitement du diable de type 2let de ses complications. <i>Medecine Des Maladies Metaboliques</i> , 2021 , 15, 661-661	0.1		