Kaori Nishizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3900495/publications.pdf

Version: 2024-02-01

304602 345118 1,649 124 22 citations h-index papers

g-index 128 128 128 1305 docs citations times ranked citing authors all docs

36

#	Article	IF	Citations
1	Room-temperature fabrication of Pt nanoparticle-dispersed porous WO3 gasochromic switchable films using oxalic acid. Solar Energy Materials and Solar Cells, 2022, 245, 111891.	3.0	2
2	Low-temperature chemical fabrication of WO3 gasochromic switchable films: a comparative study of Pd and Pt nanoparticles dispersed WO3 films based on their structural and chemical properties. Thin Solid Films, 2020, 709, 138201.	0.8	13
3	Low-temperature chemical fabrication of Pt-WO 3 gasochromic switchable films using UV irradiation. Solar Energy Materials and Solar Cells, 2017, 170, 21-26.	3.0	30
4	New Preparation Method of Visible Light Responsive Titanium Dioxide Photocatalytic Films. Materials Sciences and Applications, 2014, 05, 112-123.	0.3	3
5	Adsorption of Bromic Acid Ion in Water by the Reduced Titanium Oxide. Materials Science Forum, 2012, 724, 97-100.	0.3	O
6	Visible Light Responsive Titanium Dioxide Photocatalysts Prepared by Ultraviolet Irradiation. Materials Science Forum, 2011, 695, 497-500.	0.3	0
7	Effect of Calcination Temperature on the Photocatalytic Activity of Porous TiO ₂ Film. Materials Science Forum, 2010, 658, 495-498.	0.3	O
8	A New Preparation Method of Visible Light Responsive Titanium Dioxide Photocatalytic Films by Sol-Gel Method. Materials Science Forum, 2009, 620-622, 675-678.	0.3	1
9	Photocatalytic Activity of Porous TiO ₂ Film Prepared by Dip-Coating Technique Using Sol Containing Trehalose. Materials Science Forum, 2009, 620-622, 691-694.	0.3	1
10	Effect of calcination temperature on the microstructure of porous TiO2 film. Research on Chemical Intermediates, 2009, 35, 257-262.	1.3	4
11	Novel Liquid Crystalline Organicâ^'Inorganic Hybrid for Highly Sensitive Photoinscriptions. Chemistry of Materials, 2009, 21, 2624-2631.	3.2	34
12	Micropatterning of titanium oxide film via phototactic mass transport. Journal of Materials Chemistry, 2009, 19, 7191.	6.7	18
13	Surface morphology control of zirconia thin films prepared using novel photochromic molecules. Thin Solid Films, 2008, 516, 2635-2638.	0.8	8
14	Microstructure control of porous alumina film using aqueous sol containing poly(ethylene glycol). Journal of Electroceramics, 2008, 21, 524-527.	0.8	5
15	CHEMICAL SOLUTION DEPOSITION AND ELECTRICAL PROPERTIES OF (100)-PREDOMINANT BaTiO3 THICKER FILMS. Integrated Ferroelectrics, 2007, 88, 51-57.	0.3	3
16	Morphology Control of Zirconia Thin Films Prepared Using Photochromic Precursors. Key Engineering Materials, 2007, 350, 133-136.	0.4	0
17	Photo-assisted crystallization of zirconia thin films prepared using chelate compounds. Journal of Materials Research, 2007, 22, 2608-2616.	1.2	3
18	Microstructure Control of Porous Alumina Film Using Aqueous Sol Containing Trehalose. Key Engineering Materials, 2007, 350, 7-10.	0.4	1

#	Article	IF	CITATIONS
19	Improvement of Orientation and Characterization of Dielectric Property for (Y,Yb)MnO ₃ /HfO ₂ /Si Structures. Key Engineering Materials, 2007, 350, 107-110.	0.4	4
20	Construction of the (Y,Yb)MnO3/HfO2Stacking Layers through the Chemical Solution Process. Ferroelectrics, 2007, 357, 196-200.	0.3	0
21	Photo-assisted crystallization of zirconia thin films and their electrical evaluation. Thin Solid Films, 2007, 515, 4004-4010.	0.8	5
22	Structure and piezoelectric properties of $1-\hat{l}\frac{1}{4}$ m-thick polar-axis-oriented CaBi4Ti4O15 films. Applied Physics A: Materials Science and Processing, 2007, 87, 637-640.	1.1	3
23	Bottom-up fabrication and piezoelectric properties of CaBi4Ti4O15 micro-plateaus. Applied Physics A: Materials Science and Processing, 2007, 88, 273-276.	1.1	0
24	Construction and characterization of alkoxy-derived (Y,Yb)MnO3/HfO2/Si structures for FeRAM application. Journal of Sol-Gel Science and Technology, 2007, 42, 251-256.	1.1	1
25	Composition Dependence of Microstructure and Dielectric Properties in Alkoxy-Derived Ba(Ti,Zr)O3Thin Films. Japanese Journal of Applied Physics, 2006, 45, 155-159.	0.8	9
26	Electrical properties of (100)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations. Acta Materialia, 2006, 54, 3893-3898.	3.8	29
27	Downsizing of HfO2Layer for Pt/(Y,Yb)MnO3/HfO2/Si Structure. Japanese Journal of Applied Physics, 2006, 45, 7332-7335.	0.8	0
28	Thickness Dependence of Electrical Properties of Highly (100)-Oriented BaTiO3Thin Films Prepared by One-Step Chemical Solution Deposition. Japanese Journal of Applied Physics, 2006, 45, 855-859.	0.8	17
29	Effects of Hydrolysis on Photochromic ZrO ₂ Precursor Solutions. Key Engineering Materials, 2006, 301, 87-90.	0.4	6
30	Characterization of Dielectric Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Ferroelectrics/Insulator Stacking Layers. Key Engineering Materials, 2006, 301, 65-70.	0.4	6
31	Characterization of Dielectric Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Ferroelectrics /HfO ₂ Stacking Layers. Key Engineering Materials, 2006, 320, 73-76.	0.4	4
32	Synthesis of a New Photochromic ZrO ₂ Precursor for Preparation of Functional Thin Films. Key Engineering Materials, 2006, 320, 175-178.	0.4	5
33	Dielectric and Piezoelectric Properties of Ba(Ti,Zr)O ₃ Thin Films Consisted of Nano-Crystals. Key Engineering Materials, 2006, 301, 53-56.	0.4	3
34	Structure and Electrical Properties of Highly (100)-Oriented Ba(Zr _{0.05} Ti _{0.95})O ₃ Films Prepared by Chemical Solution Deposition. Advanced Materials Research, 2006, 11-12, 101-104.	0.3	1
35	Electrochemical Properties of Nanoporous TiO ₂ Films. Key Engineering Materials, 2006, 301, 83-86.	0.4	1
36	Chemically Deposited (100)-Oriented BaTiO ₃ Films with Highly Concentrated Solution Using High Crystallinity BaTiO ₃ as a Buffer Layer. Key Engineering Materials, 2006, 320, 77-80.	0.4	1

3

#	Article	IF	CITATIONS
37	Preparation and Characterization of Porous Alumina Film Using Sol Containing PEG. Key Engineering Materials, 2006, 320, 159-162.	0.4	1
38	IMPROVEMENT OF ALKOXY-DERIVED HfO2 LAYERS FOR (Y, Yb)MnO3/HfO2/Si STRUCTURES. Integrated Ferroelectrics, 2006, 84, 121-127.	0.3	5
39	FERRO- AND PIEZOELECTRIC CHARACTERISTICS OF BOTTOM-UP FABRICATED CaBi4Ti4O15 FILMS WITH PREFERRED ORIENTATION. Integrated Ferroelectrics, 2006, 80, 21-28.	0.3	O
40	Characterization of (Y,Yb)MnO3/Y2O3/Si Prepared from Alkoxide Solutions. Ferroelectrics, 2005, 329, 107-111.	0.3	1
41	Wavelength Dependence of Crystallization of Alkoxy-Derived ZrO2 Thin Films Prepared by Ultraviolet Irradiation. Journal of Materials Research, 2005, 20, 3133-3140.	1.2	7
42	Dielectric and piezoelectric properties of highly (100)-oriented BaTiO3 thin film grown on a Pt/TiOx/SiO2/Si substrate using LaNiO3 as a buffer layer. Journal of Crystal Growth, 2005, 284, 190-196.	0.7	84
43	Crystal Phase and Orientation Control in Integrated Ferroelectric CaBi ₄ Ti ₄ O ₁₅ Using a Tailored Liquid of Alkoxides. International Journal of Applied Ceramic Technology, 2005, 2, 64-72.	1.1	3
44	Ferroelectric characteristics of silicate-bound Bi4Ti3O12 thin films. Applied Physics A: Materials Science and Processing, 2005, 80, 271-273.	1.1	0
45	Effect of amorphous TiO2 buffer layer on the phase formation of CaBi4Ti4O15 ferroelectric thin films. Applied Physics A: Materials Science and Processing, 2005, 81, 861-864.	1.1	5
46	Structure and ferro-/piezoelectric properties of bimorph-shape CaBi4Ti4O15 films on Pt foils. Applied Physics A: Materials Science and Processing, 2005, 80, 1481-1484.	1.1	0
47	Ferro- and Piezoelectric Properties of CaBi4Ti4O15 Films with Polar Axis Orientation. Integrated Ferroelectrics, 2005, 69, 143-149.	0.3	0
48	Impact of oxygen ambient on ferroelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Applied Physics Letters, 2005, 86, 112901.	1.5	19
49	INVESTIGATION OF ELECTRICAL PROPERTIES FOR (Y,Yb)MnO3/HfO2/Si and (Y,Yb)MnO3/Y2O3/Si STRUCTURES. Integrated Ferroelectrics, 2005, 75, 17-25.	0.3	8
50	Microstructure Control and Dielectric/Piezoelectric Properties of Alkoxy-Derived Ba(Ti,Zr)O3Thin Films. Japanese Journal of Applied Physics, 2005, 44, 6885-6890.	0.8	45
51	Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Applied Physics Letters, 2004, 84, 3771-3773.	1.5	46
52	Effects of \hat{I}^2 -diketone Addition on Crystallinity of Photo-Assisted Alkoxy-Derived Zirconia Thin Films. Key Engineering Materials, 2004, 269, 125-128.	0.4	6
53	Preparation of Nanoporous TiO ₂ Film Using Aqueous Sol with Trehalose. Key Engineering Materials, 2004, 269, 87-90.	0.4	7
54	Construction of MFIS Structure Using Alkoxy-Derived (Y,Yb)MnO ₃ Thin Films. Key Engineering Materials, 2004, 269, 49-52.	0.4	3

#	Article	IF	Citations
55	Composition Dependence of Lead-Free Ferroelectric Ba(Ti,Zr)O ₃ Thin Films Fabricated by Chemical Solution Deposition Process. Key Engineering Materials, 2004, 269, 57-60.	0.4	6
56	Novel (Y,Yb)MnO3 Thin Films for FeRAM Application. Integrated Ferroelectrics, 2004, 65, 117-123.	0.3	8
57	Fabrication and Characterization of Ba(Ti,Zr)O3 Thin Films Through the Chemical Solution Deposition Process. Integrated Ferroelectrics, 2004, 64, 227-236.	0.3	9
58	Grain Size Effect on Dielectric and Piezoelectric Properties of Alkoxy-Derived BaTiO3-Based Thin Films. Japanese Journal of Applied Physics, 2004, 43, 6525-6529.	0.8	42
59	Current Status of Bi-Based Precursors for Integrated Ferroelectrics. Integrated Ferroelectrics, 2004, 62, 133-140.	0.3	5
60	Preparation of thick TiO2film with large surface area using aqueous sol with poly(ethylene glycol). Journal of Materials Science, 2004, 39, 699-701.	1.7	30
61	Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose. Materials Letters, 2004, 58, 2751-2753.	1.3	38
62	Novel Ferroelectric Candidates in a Series of ABi4Ti4O15 (A: Alkaline Earth Metals) Thin Films. Integrated Ferroelectrics, 2003, 52, 3-10.	0.3	2
63	Ferroelectric Property of Alkoxy-Derived YMnO3Films Crystallized in Argon. Japanese Journal of Applied Physics, 2003, 42, 5692-5695.	0.8	17
64	Control of Crystallinity of Alkoxy-Derived Zirconia Thin Films by UV Irradiation. Key Engineering Materials, 2003, 248, 125-128.	0.4	3
65	Control of crystallization and crystal orientation of alkoxy-derived SrBi ₂ Ta ₂ O ₉ thin films by ultraviolet irradiation. Journal of Materials Research, 2003, 18, 899-907.	1.2	17
66	Compositional Dependence of Ferroelectric Properties for (Y,Yb)MnO3 Thin Films Prepared by Chemical Solution Deposition. Integrated Ferroelectrics, 2003, 52, 55-61.	0.3	6
67	Preparation of (Y,Yb)MnO3/Y2O3/Si (MFIS) Structure by Chemical Solution Deposition Method. Japanese Journal of Applied Physics, 2003, 42, 6007-6010.	0.8	19
68	Ferroelectric Properties of (Y,Yb)MnO ₃ Thin Films Prepared Using Alkoxide Solutions. Key Engineering Materials, 2003, 248, 77-82.	0.4	9
69	Synthesis of Ferroelectric YMnO ₃ Thin Film by Chemical Solution Deposition. Key Engineering Materials, 2002, 214-215, 151-156.	0.4	10
70	Platinum-assisted phase transition in bismuth-based layer-structured ferroelectric CaBi4Ti4O15 thin films. Applied Physics Letters, 2002, 81, 3227-3229.	1.5	31
71	Effects of Annealing Conditions on Crystallization of Hexagonal Manganite Films. Ferroelectrics, 2002, 270, 99-104.	0.3	10
72	Effects of Substrates on Alkoxy-Derived (Y,Yb)MnO 3 Thin Films. Integrated Ferroelectrics, 2002, 47, 91-100.	0.3	6

#	Article	IF	CITATIONS
73	Chemical Approach Using Tailored Liquid Sources for Traditional and Novel Ferroelectric Thin Films. Japanese Journal of Applied Physics, 2002, 41, 6829-6835.	0.8	16
74	Effect of Polymer Addition on Microstructure of Porous TiO ₂ Film. Key Engineering Materials, 2002, 228-229, 131-136.	0.4	2
75	Preparation and Characterization of Layer-Structured Perovskite $Ca < sub > X < sub > Bi < sub > 4-X < sub > Ti < sub > 3 < sub > 0 < sub > 12-X/2 < sub > (X = 1, 2) Thin Films. Key Engineering Materials, 2002, 228-229, 93-98.$	0.4	0
76	Effects of Composition on Crystallographic Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Thin Films. Key Engineering Materials, 2002, 228-229, 141-146.	0.4	2
77	Structure and Ferroelectric Properties of Alkoxy-Derived Ca2Bi4Ti5O18Thin Films on Pt(111)/TiOx/SiO2/Si(100). Japanese Journal of Applied Physics, 2002, 41, 2110-2114.	0.8	4
78	Photo-Assisted Control of Surface Morphology of Alkoxy-Derived ZrO ₂ Thin Films. Key Engineering Materials, 2002, 228-229, 147-154.	0.4	5
79	Special Issue Ceramics Integration. Integration of Ferroelectric Ca2Bi4Ti5O18 Thin Films on Pt-Passivated Si via Spin-Coating Technique Journal of the Ceramic Society of Japan, 2002, 110, 403-407.	1.3	0
80	Platinum-Accelerated Phase Transition in Bismuth-Based Layer-Structured Ferroelectric Thin Films. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
81	Novel chemical processing for crystallization of SrBi2Ta2O9 thin films via UV irradiation. Materials Letters, 2002, 52, 20-23.	1.3	15
82	Preparation and orientation control of RMnO3 (R=Y, Yb) thin film by chemical solution deposition. Journal of Crystal Growth, 2002, 237-239, 482-486.	0.7	12
83	Calcium Phosphate Formation on the Phosphorylated Chitin Samples from SBF Solution. Key Engineering Materials, 2001, 192-195, 307-310.	0.4	4
84	Low-temperature synthesis in vacuum of c-axis oriented ferroelectric YMnO3 thin films using alkoxy-derived precursors. Integrated Ferroelectrics, 2001, 40, 155-162.	0.3	2
85	Chemical processing and characterization of ferroelectric thin films of bismuth-based layer-structured perovsktte cabi4ti4o15 with the octahedron number of 4. Integrated Ferroelectrics, 2001, 36, 321-329.	0.3	0
86	Bioactive Properties of Chitin/Chitosanâ€"Calcium Phosphate Composite Materials. Journal of Sol-Gel Science and Technology, 2001, 21, 105-113.	1.1	31
87	Synthesis of YMnO3thin films from alkoxy-derived precursors. Ferroelectrics, 2001, 263, 285-290.	0.3	2
88	Control of Crystal Structure of SrBi ₂ Ta ₂ O ₉ Thin Films by UV Irradiation. Key Engineering Materials, 2001, 214-215, 145-150.	0.4	1
89	Preparation and Ferroelectric Properties of CaBi ₂ Ta ₂ O ₉ Thin Films on Pt-Passivated Silicon. Key Engineering Materials, 2001, 214-215, 139-144.	0.4	0

Comparison of Microstructure and Ferroelectric Properties of Alkoxy-Derived MBi4Ti4O15 (M: Ca or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50.8

#	Article	IF	CITATIONS
91	Ferroelectric properties of alkoxy-derived CaBi4Ti4O15 thin films on Pt-passivated Si. Applied Physics Letters, 2001, 78, 1119-1121.	1.5	71
92	Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon. Journal of Applied Physics, 2001, 89, 5088-5092.	1.1	3
93	Phase transition, ferroelectric, and dielectric properties of layer-structured perovskite CaBi3Ti3O12â°Î thin films. Applied Physics Letters, 2001, 79, 397-399.	1.5	5
94	Fabrication of Porous Ceramics with Well-Controlled Open Pores by Sintering of Fibrous Hydroxyapatite Particles Journal of the Ceramic Society of Japan, 2000, 108, 249-253.	1.3	49
95	Ferroelectric and Fatigue Properties of Alkoxy-Derived CaBi2Ta2O9 Thin Films. Materials Research Society Symposia Proceedings, 2000, 655, 126.	0.1	1
96	Growth and adhesion of osteoblast-like cells derived from neonatal rat calvaria on calcium phosphate ceramics. Journal of Bioscience and Bioengineering, 2000, 89, 18-26.	1.1	39
97	Production of poly-l ² -hydroxybutyric acid by microorganisms accumulated from river water using a two-stage perfusion culture system. Journal of Bioscience and Bioengineering, 2000, 89, 97-99.	1.1	1
98	Preparation of Layer-Structured CaBi2Ta2O9Ferroelectric Thin Films through a Triple Alkoxide Route. Japanese Journal of Applied Physics, 2000, 39, 5501-5504.	0.8	11
99	Ferroelectric properties of alkoxy-derived CaBi2Ta2O9 thin films. Journal of Applied Physics, 2000, 88, 3779-3780.	1.1	22
100	Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials, 1999, 20, 879-884.	5.7	138
101	Title is missing!. Journal of Materials Science Letters, 1999, 18, 367-368.	0.5	5
102	In-vitro calcium phosphate growth over functionalized cotton fibers. Journal of Materials Science: Materials in Medicine, 1999, 10, 395-400.	1.7	14
103	Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. Journal of Bioscience and Bioengineering, 1999, 87, 320-327.	1.1	43
104	Calcium phosphate compound–cellulose fiber composite material prepared in soaking medium at 36.5–60 °C. Journal of Materials Research, 1998, 13, 922-925.	1.2	12
105	Surface Modification of Bioceramics by Silane Coupling Agent and Their Evaluation. Journal of the Ceramic Society of Japan, 1998, 106, 709-714.	1.3	2
106	Growth of calcium phosphate on phosphorylated chitin fibres. Journal of Materials Science: Materials in Medicine, 1997, 8, 407-412.	1.7	72
107	Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells., 1997, 34, 507-517.		74
108	Preparation of Calcium-Strontium Apatite through Mechanochemical Method. Chemistry Letters, 1996, 25, 91-92.	0.7	18

7

#	Article	IF	CITATIONS
109	Time-dependent variation of the surface structure of bioceramics in tissue culture medium and the effect on adhesiveness of cells. Journal of Bioscience and Bioengineering, 1996, 81, 226-232.	0.9	24
110	Hydroxyapatite coating on alumina ceramics by an oxidative decomposition method of EDTA-calcium chelate. Journal of Materials Science Letters, 1996, 15, 179-181.	0.5	12
111	Wettability of Calcium Phosphate Ceramics by Water. Journal of the Ceramic Society of Japan, 1995, 103, 46-49.	1.3	16
112	Surface Modification of Calcium Phosphate Ceramics with Silane Coupling Reagents Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 63-67.	0.1	8
113	Growth of calcium phosphate on ion-exchange resins pre-saturated with calcium or hydrogenphosphate ions: an SEM/EDX and XPS study. Journal of Materials Science: Materials in Medicine, 1995, 6, 409-419.	1.7	18
114	Growth of calcium phosphate on surface-modified cotton. Journal of Materials Science: Materials in Medicine, 1995, 6, 597-605.	1.7	63
115	Further studies of calcium phosphate growth on phosphorylated cotton fibres. Journal of Materials Science: Materials in Medicine, 1995, 6, 658-669.	1.7	51
116	Effects of the surface wettability and zeta potential of bioceramics on the adhesiveness of anchorage-dependent animal cells. Journal of Bioscience and Bioengineering, 1993, 75, 435-437.	0.9	24
117	Preparation and Evaluation of Mullite Ceramics Carrier for Immobilization of Enzyme. Journal of the Ceramic Society of Japan, 1992, 100, 1376-1380.	1.3	0
118	Surface Roughness Control of Zirconia Films Using a Novel Photoresponsive Precursor Molecule for Improving its Photocatalytic Activity. Materials Science Forum, 0, 569, 13-16.	0.3	0
119	Influence of Calcination Temperature on the Microstructure of Porous TiO ₂ Film. Materials Science Forum, 0, 569, 17-20.	0.3	1
120	Influence by Difference of the Photocatalyst Nanoparticle Shape to Skin. Materials Science Forum, 0, 620-622, 659-662.	0.3	0
121	Relation between Phosphorus Amounts Absorbed by Volcanic Ash Fall Deposits and its Calcinating Temperature. Materials Science Forum, 0, 658, 101-104.	0.3	1
122	A New Preparation Method of Visible Light Responsive Titanium Dioxide Photocatalytic Films by Ultraviolet Irradiation. Materials Science Forum, 0, 658, 487-490.	0.3	2
123	Relationship between Chemical Composition and the Amount of Phosphorus Adsorbed. Materials Science Forum, 0, 695, 141-144.	0.3	0
124	Polar Axis Orientation and Electrical Properties of Alkoxy-Derived One Micro-Meter-Thick Ferro-/Piezoelectric Films., 0,, 33-42.		O