Rainer Georg Joergensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3900084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology and Biochemistry, 1996, 28, 25-31.	4.2	843
2	The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biology and Biochemistry, 1996, 28, 33-37.	4.2	649
3	Pathways of nitrogen utilization by soil microorganisms – A review. Soil Biology and Biochemistry, 2010, 42, 2058-2067.	4.2	551
4	Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 2006, 137, 100-108.	2.3	359
5	Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology, 2003, 23, 237-244.	2.1	263
6	Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biology and Biochemistry, 2007, 39, 2111-2118.	4.2	261
7	Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 2006, 38, 1040-1051.	4.2	258
8	Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biology and Biochemistry, 2008, 40, 30-48.	4.2	244
9	Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science, 2006, 169, 295-309.	1.1	232
10	Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54, 559-568.	2.3	229
11	Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma, 2016, 271, 115-123.	2.3	208
12	Alive and kicking: Why dormant soil microorganisms matter. Soil Biology and Biochemistry, 2018, 116, 419-430.	4.2	181
13	Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biology and Biochemistry, 1997, 29, 1033-1042.	4.2	163
14	Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology, 2009, 100, 303-309.	4.8	136
15	Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant and Soil, 2010, 328, 203-215.	1.8	126
16	Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biology and Biochemistry, 1999, 31, 859-866.	4.2	114
17	Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biology and Fertility of Soils, 2010, 46, 303-307.	2.3	111
18	Measuring soil microbial biomass using an automated procedure. Soil Biology and Biochemistry, 2011, 43, 873-876.	4.2	98

#	Article	IF	CITATIONS
19	Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Applied Soil Ecology, 2013, 63, 23-28.	2.1	98
20	The determination of $\hat{l}'13C$ in soil microbial biomass using fumigation-extraction. Soil Biology and Biochemistry, 2003, 35, 947-954.	4.2	93
21	Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biology and Fertility of Soils, 2011, 47, 387-396.	2.3	93
22	Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. European Journal of Agronomy, 2014, 52, 259-270.	1.9	93
23	The automated determination of glucosamine, galactosamine, muramic acid, and mannosamine in soil and root hydrolysates by HPLC. Journal of Plant Nutrition and Soil Science, 2004, 167, 17-21.	1.1	92
24	CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Applied Soil Ecology, 2009, 42, 297-302.	2.1	92
25	Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biology and Biochemistry, 2007, 39, 2829-2839.	4.2	90
26	Dynamics of maize (Zea mays L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen. Soil Biology and Biochemistry, 2005, 37, 1259-1266.	4.2	86
27	Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils, 2022, 58, 1-6.	2.3	81
28	Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biology and Biochemistry, 2000, 32, 647-652.	4.2	78
29	Rhizodeposition of C and N in peas and oats after 13C–15N double labelling under field conditions. Soil Biology and Biochemistry, 2007, 39, 2527-2537.	4.2	77
30	Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biology and Biochemistry, 2001, 33, 1811-1816.	4.2	74
31	Time-course of the soil microbial biomass under wheat: A one year field study. Soil Biology and Biochemistry, 1994, 26, 987-994.	4.2	73
32	Vineyard soils under organic and conventional management—microbial biomass and activity indices and their relation to soil chemical properties. Biology and Fertility of Soils, 2008, 44, 443-450.	2.3	72
33	Relationships between soil microbial indices in secondary tropical forest soils. Applied Soil Ecology, 2002, 21, 211-219.	2.1	66
34	Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biology and Biochemistry, 2017, 111, 166-175.	4.2	65
35	Decomposition of wheat straw differing in nitrogen content in soils under conventional and organic farming management. Journal of Plant Nutrition and Soil Science, 2008, 171, 886-892.	1.1	64
36	Quantification of the microbial biomass by determining ninhydrin-reactive N. Soil Biology and Biochemistry, 1996, 28, 301-306.	4.2	56

#	Article	IF	CITATIONS
37	Salinity-induced changes in the microbial use of sugarcane filter cake added to soil. Applied Soil Ecology, 2006, 31, 1-10.	2.1	56
38	Functions of elements in soil microorganisms. Microbiological Research, 2021, 252, 126832.	2.5	55
39	Relationships between P fractions and the microbial biomass in soils under different land use management. Geoderma, 2012, 173-174, 274-281.	2.3	51
40	Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Applied Soil Ecology, 2016, 108, 16-24.	2.1	50
41	Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biology and Fertility of Soils, 2019, 55, 265-274.	2.3	48
42	Organic Amendments Alleviate Salinity Effects on Soil Microorganisms and Mineralisation Processes in Aerobic and Anaerobic Paddy Rice Soils. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	48
43	Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biology and Fertility of Soils, 2014, 50, 487-498.	2.3	47
44	Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming. Applied Soil Ecology, 2015, 96, 99-107.	2.1	47
45	Changes in Soil Microbial Biomass and Residual Indices as Ecological Indicators of Land Use Change in Temperate Permanent Grassland. Microbial Ecology, 2014, 67, 907-918.	1.4	46
46	Effects of manure quality and application forms on soil C and N turnover of a subtropical oasis soil under laboratory conditions. Biology and Fertility of Soils, 2004, 39, 165-171.	2.3	45
47	Microbial reaction in activity, biomass, and community structure after long-term continuous mixing of a grassland soil. Soil Biology and Biochemistry, 2005, 37, 1249-1258.	4.2	44
48	Simultaneous measurement of S, macronutrients, and heavy metals in the soil microbial biomass with CHCl3 fumigation and NH4NO3 extraction. Soil Biology and Biochemistry, 2009, 41, 309-314.	4.2	44
49	Influence of mouldboard plough and rotary harrow tillage on microbial biomass and nutrient stocks in two long-term experiments on loess derived Luvisols. Applied Soil Ecology, 2010, 46, 405-412.	2.1	43
50	Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma, 2014, 226-227, 79-84.	2.3	43
51	C and net N mineralisation in a coniferous forest soil: the contribution of the temporal variability of microbial biomass C and N. Soil Biology and Biochemistry, 2002, 34, 841-849.	4.2	42
52	Adenylates as an estimate of microbial biomass C in different soil groups. Soil Biology and Biochemistry, 2003, 35, 1485-1491.	4.2	42
53	Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths. European Journal of Soil Biology, 2010, 46, 27-33.	1.4	42
54	Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biology and Biochemistry, 2015, 91, 310-317.	4.2	41

#	Article	IF	CITATIONS
55	Similar spatial patterns of soil quality indicators in three poplar-based silvo-arable alley cropping systems in Germany. Biology and Fertility of Soils, 2019, 55, 1-14.	2.3	41
56	Microbial C, N, and P relationships in moisture-stressed soils of Potohar, Pakistan. Journal of Plant Nutrition and Soil Science, 2006, 169, 494-500.	1.1	39
57	Compost and P amendments for stimulating microorganisms and maize growth in a saline soil from Pakistan in comparison with a nonsaline soil from Germany. Journal of Plant Nutrition and Soil Science, 2007, 170, 745-752.	1.1	39
58	Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization. Applied Soil Ecology, 2017, 114, 82-89.	2.1	39
59	Comparison of methods for measuring heavy metals and total phosphorus in soils contaminated by different sources. Archives of Agronomy and Soil Science, 2008, 54, 413-422.	1.3	38
60	Decomposition of maize residues after manipulation of colonization and its contribution to the soil microbial biomass. Biology and Fertility of Soils, 2008, 44, 891-895.	2.3	37
61	Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biology and Biochemistry, 1996, 28, 1147-1153.	4.2	36
62	Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. Journal of Plant Nutrition and Soil Science, 2001, 164, 657-663.	1.1	36
63	Respiration pattern and microbial use of field-grown transgenic Bt-maize residues. Soil Biology and Biochemistry, 2007, 39, 2380-2389.	4.2	36
64	Effect of cattle faeces with different microbial biomass content on soil properties, gaseous emissions and plant growth. Biology and Fertility of Soils, 2013, 49, 61-70.	2.3	36
65	Fate of 13C- and 15N-labelled rhizodeposition of Lolium perenne as function of the distance to the root surface. Soil Biology and Biochemistry, 2010, 42, 910-918.	4.2	35
66	Effects of direct chloroform fumigation on suspended cells of 14C and 32P labelled bacteria and fungi. Soil Biology and Biochemistry, 1996, 28, 677-679.	4.2	34
67	Organic Matter and Micro-Organisms in Tropical Soils. Soil Biology, 2010, , 17-44.	0.6	33
68	Organic fertilizer effects on pea yield, nutrient uptake, microbial root colonization and soil microbial biomass indices in organic farming systems. European Journal of Agronomy, 2013, 49, 32-41.	1.9	33
69	Effects of biogas and raw slurries on grass growth and soil microbial indices. Journal of Plant Nutrition and Soil Science, 2016, 179, 215-222.	1.1	33
70	Adenylate energy charge of a glucose-treated soil without adding a nitrogen source. Soil Biology and Biochemistry, 2002, 34, 1317-1324.	4.2	32
71	Field measurements of the CO2 evolution rate under different crops during an irrigation cycle in a mountain oasis of Oman. Applied Soil Ecology, 2004, 25, 85-91.	2.1	32
72	Microbial reaction of secondary tropical forest soils to the addition of leaf litter. Applied Soil Ecology, 2006, 31, 53-61.	2.1	32

#	Article	IF	CITATIONS
73	Formation and use of microbial residues after adding sugarcane sucrose to a heated soil devoid of soil organic matter. Soil Biology and Biochemistry, 2008, 40, 97-105.	4.2	32
74	Determination of microbial biomass and fungal and bacterial distribution in cattle faeces. Soil Biology and Biochemistry, 2011, 43, 1237-1244.	4.2	30
75	Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments. Chemosphere, 2006, 65, 981-987.	4.2	27
76	Changes in microbial biomass indices after 10 years of farmyard manure and vegetal fertilizer application to a sandy soil under organic management. Plant and Soil, 2011, 343, 221-234.	1.8	27
77	Digging in the dirt – Inadequacy of belowground plant biomass quantification. Soil Biology and Biochemistry, 2016, 96, 137-144.	4.2	27
78	Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia, 2014, 57, 161-169.	0.5	26
79	Variations in soil and microbial biomass C, N and fungal biomass ergosterol along elevation and depth gradients in Alpine ecosystems. Geoderma, 2019, 345, 93-103.	2.3	26
80	Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types. Geoderma, 2021, 386, 114922.	2.3	26
81	Microbial use of maize cellulose and sugarcane sucrose monitored by changes in the 13C/12C ratio. Soil Biology and Biochemistry, 2007, 39, 1888-1896.	4.2	25
82	Microbial use of organic amendments in saline soils monitored by changes in the 13C/12C ratio. Soil Biology and Biochemistry, 2008, 40, 1217-1224.	4.2	24
83	Soil Microbial Properties Along a Precipitation Transect in Southern Africa. Arid Land Research and Management, 2009, 23, 115-126.	0.6	24
84	Microbial use of 15N-labelled maize residues affected by winter temperature scenarios. Soil Biology and Biochemistry, 2013, 65, 22-32.	4.2	24
85	Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus) Tj ETQq1 1 Biochemistry, 2015, 83, 125-137.	0.784314 4.2	rgBT /Overlo 24
86	Changes in amino acid enantiomers and microbial performance in soils from a subtropical mountain oasis in Oman abandoned for different periods. Biology and Fertility of Soils, 2004, 39, 398-406.	2.3	23
87	Soilâ€microbial response to sugarcane filter cake and biogenic waste compost. Journal of Plant Nutrition and Soil Science, 2008, 171, 355-360.	1.1	23
88	Dose-dependent reactions of Aporrectodea caliginosa to perfluorooctanoic acid and perfluorooctanesulfonic acid in soil. Ecotoxicology and Environmental Safety, 2013, 95, 39-43.	2.9	23
89	Carbon in plant biomass and soils of poplar and willow plantations—implications for SOC distribution in different soil fractions after re-conversion to arable land. Plant and Soil, 2013, 367, 407-417.	1.8	22
90	Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa. Soil Biology and Biochemistry, 2010, 42, 276-282.	4.2	21

#	Article	IF	CITATIONS
91	Mid-term tracing of 15N derived from urine and dung in soil microbial biomass. Biology and Fertility of Soils, 2011, 47, 147-155.	2.3	21
92	Impact of pea growth and arbuscular mycorrhizal fungi on the decomposition of 15N-labeled maize residues. Biology and Fertility of Soils, 2012, 48, 547-560.	2.3	21
93	Rice straw addition does not substantially alter microbial properties under hypersaline soil conditions. Biology and Fertility of Soils, 2016, 52, 867-877.	2.3	20
94	Response of soil microorganisms after converting a saline desert to arable land in central Asia. Applied Soil Ecology, 2016, 98, 1-7.	2.1	20
95	Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia. Ecological Indicators, 2017, 76, 111-118.	2.6	20
96	Relation between respiration, ATP content, and Adenylate Energy Charge (AEC) after incubation at different temperatures and after drying and rewetting. Journal of Plant Nutrition and Soil Science, 2002, 165, 435.	1.1	19
97	Influence of tillage on degradation kinetics using the litterbag method. European Journal of Soil Biology, 2011, 47, 198-204.	1.4	19
98	Impact of activated charcoal and tannin amendments on microbial biomass and residues in an irrigated sandy soil under arid subtropical conditions. Biology and Fertility of Soils, 2014, 50, 95-103.	2.3	19
99	Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma, 2018, 330, 99-106.	2.3	19
100	Even flow? Changes of carbon and nitrogen release from pea roots over time. Plant and Soil, 2018, 431, 143-157.	1.8	19
101	Immobilization and mineralization of nitrogen in a saline and alkaline soil during microbial use of sugarcane filter cake amended with glucose. Biology and Fertility of Soils, 2009, 45, 289-296.	2.3	18
102	Quantification of Soil Microbial Biomass by Fumigation-Extraction. , 2005, , 281-295.		17
103	Reaction of microorganisms to rewetting in continuous cereal and legume rotation soils of semi-arid Sub-Saharan Africa. Soil Biology and Biochemistry, 2007, 39, 1512-1517.	4.2	17
104	Mineralisation of distinct biogas digestate qualities directly after application to soil. Biology and Fertility of Soils, 2021, 57, 235-243.	2.3	17
105	Sources of Heavy Metals and Their Long-term Effects on Microbial C, N and P Relationships in Soil. Water, Air, and Soil Pollution, 2007, 181, 225-234.	1.1	16
106	Specific response of fungal and bacterial residues to one-season tillage and repeated slurry application in a permanent grassland soil. Applied Soil Ecology, 2013, 72, 31-40.	2.1	16
107	Soil substrate utilization pattern and relation of functional evenness of plant groups and soil microbial community in five low mountain NATURA 2000. Plant and Soil, 2014, 383, 275-289.	1.8	16
108	Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. Journal of Arid Environments, 2014, 100-101, 106-110.	1.2	16

#	Article	IF	CITATIONS
109	Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant and Soil, 2019, 443, 449-462.	1.8	16
110	Effects of converting a temperate short-rotation coppice to a silvo-arable alley cropping agroforestry system on soil quality indicators. Agroforestry Systems, 2020, 94, 389-400.	0.9	16
111	Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. Soil Ecology Letters, 2020, 2, 61-72.	2.4	16
112	Litter decomposition in fertilizer treatments of vegetable crops under irrigated subtropical conditions. Biology and Fertility of Soils, 2011, 47, 71-80.	2.3	15
113	Carbon use efficiency and microbial functional diversity in a temperate Luvisol and a tropical Nitisol after millet litter and N addition. Biology and Fertility of Soils, 2020, 56, 1139-1150.	2.3	15
114	Evaluation of arbuscular mycorrhiza with symbiotic and nonsymbiotic pea isolines at three sites in the Alentejo, Portugal. Journal of Plant Nutrition and Soil Science, 2006, 169, 661-669.	1.1	14
115	Dynamics of mineral components in the forest floor of an acidic beech (Fagus sylvatica L.) forest. European Journal of Soil Biology, 2009, 45, 285-289.	1.4	14
116	Application of biochemical degradation indices to the microbial decomposition of maize leaves and wheat straw in soils under different tillage systems. Geoderma, 2011, 162, 207-214.	2.3	14
117	Microbial Biomass Sulphur—An Important Yet Understudied Pool in Soil. Agronomy, 2021, 11, 1606.	1.3	14
118	Permanent-soil monitoring sites for documentation of soil-fertility development after changing from conventional to organic farming. Journal of Plant Nutrition and Soil Science, 2006, 169, 564-572.	1.1	13
119	Specific respiration rates, adenylates, and energy budgets of soil microorganisms after addition of transgenic Bt-maize straw. Pedobiologia, 2010, 53, 191-196.	0.5	13
120	Determination of saprotrophic fungi turnover in different substrates by glucosamine-specific δ13C liquid chromatography/isotope ratio mass spectrometry. Fungal Ecology, 2012, 5, 694-701.	0.7	13
121	Short-term changes in amino sugar-specific δ13C values after application of C4 and C3 sucrose. Soil Biology and Biochemistry, 2015, 91, 92-98.	4.2	13
122	Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition. European Journal of Soil Biology, 2015, 70, 38-45.	1.4	13
123	Microbial communities and residues in robinia- and poplar-based alley-cropping systems under organic and integrated management. Agroforestry Systems, 2018, 92, 35-46.	0.9	13
124	Microbial decomposition of fuel oil after compost addition to soil. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1997, 160, 21-24.	0.4	12
125	Microbial biomass and activity indices after organic substrate addition to a selenium-contaminated soil. Biology and Fertility of Soils, 2007, 44, 241-244.	2.3	12
126	Carbon dioxide production and oxygen consumption during the early decomposition of different litter types over a range of temperatures in soilâ€inoculated quartz sand. Journal of Plant Nutrition and Soil Science, 2010, 173, 217-223.	1.1	12

#	Article	IF	CITATIONS
127	Initial decomposition of post-harvest crown and root residues of poplars as affected by N availability and particle size. Biology and Fertility of Soils, 2014, 50, 675-683.	2.3	12
128	Effects of activated charcoal and tannin added to compost and to soil on carbon dioxide, nitrous oxide and ammonia volatilization. Journal of Plant Nutrition and Soil Science, 2015, 178, 218-228.	1.1	12
129	Quantitative microbial indices in biogas and raw cattle slurries. Engineering in Life Sciences, 2016, 16, 231-237.	2.0	12
130	Response of water extractable organic matter and its fluorescence fractions to organic farming and tree species in poplar and robinia-based alley cropping agroforestry systems. Geoderma, 2017, 290, 83-90.	2.3	12
131	Water-extractable organic matter and its fluorescence fractions in response to minimum tillage and organic farming in a Cambisol. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	12
132	Response of maize leaf decomposition in litterbags and soil bags to different tillage intensities in a long-term field trial. Applied Soil Ecology, 2019, 141, 38-44.	2.1	12
133	Soil microbial properties of subalpine steppe soils at different grazing intensities in the Chinese Altai Mountains. Scientific Reports, 2021, 11, 1653.	1.6	12
134	Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biology and Fertility of Soils, 2021, 57, 767-779.	2.3	12
135	The problem of pretreatment and unintentional variations in the fumigation-extraction method for time-course measurements in the field. Biology and Fertility of Soils, 1996, 22, 167-170.	2.3	11
136	Relationship between simulated spatial variability and some estimates of microbial biomass turnover. Soil Biology and Biochemistry, 2000, 32, 139-142.	4.2	11
137	Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet. Archives of Animal Nutrition, 2013, 67, 104-118.	0.9	11
138	Respiration response to different tillage intensities in transplanted soil columns. Geoderma, 2019, 352, 289-297.	2.3	11
139	The variability between different analytical procedures and laboratories for measuring soil microbial biomass C and biomass N by the fumigation extraction method. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1998, 161, 51-58.	0.4	10
140	Decomposition of Zn-rich Arabidopsis halleri Litter in Low and High Metal Soil in the Presence and Absence of EDTA. Water, Air, and Soil Pollution, 2008, 188, 195-204.	1.1	10
141	Soil fertility breakdown in a subtropical South African vertisol site used as a home garden. Biology and Fertility of Soils, 2003, 37, 288-294.	2.3	9
142	Comparison of HPLC Methods for the Determination of Amino Sugars in Soil Hydrolysates. Analytical Letters, 2013, 46, 2145-2164.	1.0	9
143	Response of white mustard (Sinapis alba) and the soil microbial biomass to P and Zn addition in a greenhouse pot experiment. Journal of Plant Nutrition and Soil Science, 2015, 178, 834-840.	1.1	9
144	Effects of Land Use on Microbial Indices in Tantalite Mine Soils, Western Rwanda. Land Degradation and Development, 2017, 28, 181-188.	1.8	9

#	Article	IF	CITATIONS
145	TANNINS IN GOAT DIETS MODIFY MANURE TURNOVER IN A SUBTROPICAL SOIL. Experimental Agriculture, 2018, 54, 655-669.	0.4	9
146	Comparison of different methods for determining lignin concentration and quality in herbaceous and woody plant residues. Plant and Soil, 2018, 433, 7-18.	1.8	9
147	Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Scientific Reports, 2021, 11, 11424.	1.6	9
148	The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants, 2022, 11, 1747.	1.6	9
149	Development of ergosterol, microbial biomass C, N, and P after steaming as a result of sucrose addition, and Sinapis alba cultivation. Biology and Fertility of Soils, 2010, 46, 323-331.	2.3	8
150	Soil CO2evolution rates in the field – a comparison of three methods. Archives of Agronomy and Soil Science, 2011, 57, 597-608.	1.3	8
151	Development of aggregates after application of maize residues in the presence of mycorrhizal and non-mycorrhizal pea plants. Geoderma, 2013, 202-203, 38-44.	2.3	8
152	Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in strigolactone composition. Plant and Soil, 2019, 437, 55-63.	1.8	8
153	Impact of willow-based grassland alley cropping in relation to its plant species diversity on soil ecology of former arable land. Applied Soil Ecology, 2020, 147, 103373.	2.1	8
154	Impact of cycloheximide addition on adenylates in soil. Soil Biology and Biochemistry, 2006, 38, 222-228.	4.2	7
155	Effects of Zn and P addition on the microbial biomass in a Zn deficient calcareous soil amended with glucose. Plant and Soil, 2010, 335, 493-499.	1.8	7
156	Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil. Organic Agriculture, 2018, 8, 29-38.	1.2	7
157	Relationships between feeding and microbial faeces indices in dairy cows at different milk yield levels. PLoS ONE, 2019, 14, e0221266.	1.1	7
158	Soil organic matter mobilization by re-compaction of old forest skid trails. European Journal of Soil Biology, 2020, 98, 103173.	1.4	7
159	Variations in fungal community structure along elevation gradients in contrasting Austrian Alpine ecosystems. Applied Soil Ecology, 2022, 177, 104508.	2.1	7
160	Interactions of mustard plants and soil microorganisms after application of sugarcane filter cake and pea residues to an Andosol. Journal of Plant Nutrition and Soil Science, 2012, 175, 931-938.	1.1	6
161	Soil Properties Under Manured <i>Tamarindus indica</i> in the Littoral Plain of South-Western Madagascar. Arid Land Research and Management, 2015, 29, 167-179.	0.6	6
162	Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals, 2021, 11, 564.	1.0	6

#	Article	IF	CITATIONS
163	Impact of legume versus cereal root residues on biological properties of West African soils. Plant and Soil, 2009, 325, 145-156.	1.8	5
164	Substrate use and survival of fungal plant pathogens on maize residues at winter temperatures around freezing point. Soil Biology and Biochemistry, 2014, 77, 141-149.	4.2	5
165	Response of maize and soil microorganisms to decomposing poplar root residues after shallow or homogenous mixing into soil. Journal of Plant Nutrition and Soil Science, 2015, 178, 507-514.	1.1	5
166	Changes in P fractions after long-term application of biogas slurry to soils under organic farming. Organic Agriculture, 2016, 6, 297-306.	1.2	5
167	Plant residue and native organic matter decomposition under subsoil-specific gas conditions – Comparing topsoils with C-poor and C-rich subsoils. Geoderma, 2017, 292, 1-8.	2.3	5
168	Arbuscular mycorrhizal dependency and phosphorus responsiveness of released, landrace and wild Sudanese sorghum genotypes. Archives of Agronomy and Soil Science, 2020, 66, 706-716.	1.3	5
169	Functional microbial diversity responses to biodynamic management in Burgundian vineyard soils. Biological Agriculture and Horticulture, 2020, 36, 172-186.	0.5	5
170	Microbial response of distinct soil types to land-use intensification at a South-Indian rural-urban interface. Plant and Soil, 2022, 473, 389-405.	1.8	5
171	Effects of quebracho tannin extract (<i>Schinopsis balansae</i>) and activated charcoal on feed intake and digestibility by goats and their faecal microbial biomass. Biological Agriculture and Horticulture, 2016, 32, 159-169.	0.5	4
172	Soil organic C and N stocks in the first rotation of poplar plantations in Germany. Geoderma Regional, 2019, 16, e00211.	0.9	4
173	Soil microorganisms and the growth ofLupinus albuson a high metal soil in the presence of EDTA. Archives of Agronomy and Soil Science, 2011, 57, 115-126.	1.3	3
174	Fungal plant pathogens on inoculated maize leaves in a simulated soil warming experiment. Applied Soil Ecology, 2018, 124, 75-82.	2.1	3
175	Evaluation of organic sunflower fertilization using δ15N values. Organic Agriculture, 2019, 9, 365-372.	1.2	3
176	Temperature sensitivity of CO2 efflux in soils from two alpine elevation levels with distinct bedrock types. Applied Soil Ecology, 2021, 162, 103875.	2.1	3
177	Depth transfer of fecal indicator organisms in an arable clayey soil. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1998, 161, 309-314.	0.4	2
178	Microbial use of sugarcane filter cake in an artificial saline substrate varying in anion composition and inoculant at different temperatures. Archives of Agronomy and Soil Science, 2014, 60, 327-335.	1.3	2
179	Winter decomposition of maize leaf litter at arable silt and clay sites, using a reciprocal soil transplantation approach. European Journal of Soil Biology, 2019, 93, 103088.	1.4	2
180	Measuring the CO ₂ production from maizeâ€strawâ€amended soil columns— a comparison of four methods. Journal of Plant Nutrition and Soil Science, 2011, 174, 373-380.	1.1	1

#	Article	IF	CITATIONS
181	Coffee mucilage impact on young coffee seedlings and soil microorganisms. Journal of Plant Nutrition and Soil Science, 2019, 182, 782-790.	1.1	1
182	The combined application of nitrogen and biochar reduced microbial carbon limitation in irrigated soils of West African urban horticulture. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	1

12