
Fredrick Damron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3899212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating Antibody Mediated Protection against Alpha, Beta, and Delta SARS-CoV-2 Variants of Concern in K18-hACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0218421.	3.4	14
2	Long-Term Analysis of Pertussis Vaccine Immunity to Identify Potential Markers of Vaccine-Induced Memory Associated With Whole Cell But Not Acellular Pertussis Immunization in Mice. Frontiers in Immunology, 2022, 13, 838504.	4.8	4
3	Intranasal administration of BReC-CoV-2 COVID-19 vaccine protects K18-hACE2 mice against lethal SARS-CoV-2 challenge. Npj Vaccines, 2022, 7, 36.	6.0	29
4	P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics, 2022, 23, 345.	2.8	4
5	Defining the Mechanistic Correlates of Protection Conferred by Whole-Cell Vaccination against Pseudomonas aeruginosa Acute Murine Pneumonia. Infection and Immunity, 2021, 89, .	2.2	12
6	Interplay of Antibody and Cytokine Production Reveals CXCL13 as a Potential Novel Biomarker of Lethal SARS-CoV-2 Infection. MSphere, 2021, 6, .	2.9	31
7	Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infection and Immunity, 2021, 89, .	2.2	16
8	Reinvestigating the Coughing Rat Model of Pertussis To Understand <i>Bordetella pertussis</i> Pathogenesis. Infection and Immunity, 2021, 89, e0030421.	2.2	8
9	Mucosal Immunization with DTaP Confers Protection against <i>Bordetella pertussis</i> Infection and Immunity, 2021, 89, e0034621.	2.2	7
10	Overcoming Waning Immunity in Pertussis Vaccines: Workshop of the National Institute of Allergy and Infectious Diseases. Journal of Immunology, 2020, 205, 877-882.	0.8	17
11	Innate and Adaptive Immune Responses against Bordetella pertussis and Pseudomonas aeruginosa in a Murine Model of Mucosal Vaccination against Respiratory Infection. Vaccines, 2020, 8, 647.	4.4	12
12	Highlights of the 12th International <i>Bordetella</i> Symposium. Clinical Infectious Diseases, 2020, 71, 2521-2526.	5.8	10
13	Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. Npj Vaccines, 2019, 4, 40.	6.0	33
14	<i>In Vivo</i> Gene Essentiality and Metabolism in Bordetella pertussis. MSphere, 2019, 4, .	2.9	21
15	Bordetella pertussis Can Be Motile and Express Flagellum-Like Structures. MBio, 2019, 10, .	4.1	11
16	Analysis of the <i>In Vivo</i> Transcriptome of Bordetella pertussis during Infection of Mice. MSphere, 2019, 4, .	2.9	22
17	<i>Pseudomonas aeruginosa</i> AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. MBio, 2018, 9, .	4.1	36
18	Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics NaÃ⁻ve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice. Frontiers in Immunology, 2018, 9, 2376.	4.8	9

FREDRICK DAMRON

#	Article	IF	CITATIONS
19	Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infection and Immunity, 2018, 86, .	2.2	30
20	In Vivo Bacterial Imaging Using Bioluminescence. Methods in Molecular Biology, 2018, 1790, 87-97.	0.9	6
21	The Pseudomonas aeruginosa PrrF Small RNAs Regulate Iron Homeostasis during Acute Murine Lung Infection. Infection and Immunity, 2017, 85, .	2.2	44
22	<i>Bordetella</i> adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation <i>in vitro</i> . Molecular Microbiology, 2017, 103, 214-228.	2.5	22
23	Modulation of Pertussis and Adenylate Cyclase Toxins by Sigma Factor RpoE in Bordetella pertussis. Infection and Immunity, 2017, 85, .	2.2	19
24	Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling. PLoS ONE, 2016, 11, e0146827.	2.5	38
25	Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Scientific Reports, 2016, 6, 39172.	3.3	126
26	Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics, 2015, 16, 883.	2.8	30
27	An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis. BMC Microbiology, 2015, 15, 34.	3.3	31
28	From the Environment to the Host: Re-Wiring of the Transcriptome of Pseudomonas aeruginosa from 22°C to 37°C. PLoS ONE, 2014, 9, e89941.	2.5	35
29	Genes Required for and Effects of Alginate Overproduction Induced by Growth of Pseudomonas aeruginosa on Pseudomonas Isolation Agar Supplemented with Ammonium Metavanadate. Journal of Bacteriology, 2013, 195, 4020-4036.	2.2	10
30	Construction of a Broad-Host-Range Tn <i>7</i> -Based Vector for Single-Copy P _{BAD} -Controlled Gene Expression in Gram-Negative Bacteria. Applied and Environmental Microbiology, 2013, 79, 718-721.	3.1	23
31	Construction of Mobilizable Mini-Tn <i>7</i> Vectors for Bioluminescent Detection of Gram-Negative Bacteria and Single-Copy Promoter <i>lux</i> Reporter Analysis. Applied and Environmental Microbiology, 2013, 79, 4149-4153.	3.1	68
32	Proteolytic regulation of alginate overproduction in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2012, 84, 595-607.	2.5	87
33	<i>Pseudomonas aeruginosa</i> MucD Regulates the Alginate Pathway through Activation of MucA Degradation via MucP Proteolytic Activity. Journal of Bacteriology, 2011, 193, 286-291.	2.2	51
34	P _{BAD} -Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in <i>Pseudomonas</i> and <i>Burkholderia</i> spp. and Other Bacteria. Applied and Environmental Microbiology, 2008, 74, 7422-7426.	3.1	240