Mingjie Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3898736/publications.pdf

Version: 2024-02-01

34	1,893	23 h-index	32
papers	citations		g-index
34	34 docs citations	34	2248
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	4.6	29
2	Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Nano-Micro Letters, 2022, 14, 36.	14.4	117
3	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	8.5	77
4	Graphiticâ€shell encapsulated FeNi alloy/nitride nanocrystals on biomassâ€derived Nâ€doped carbon as an efficient electrocatalyst for rechargeable Znâ€air battery. , 2021, 3, 176-187.		85
5	Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy, 2021, 79, 105409.	8.2	74
6	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	4.6	42
7	Cobaltâ€Phthalocyanineâ€Derived Molecular Isolation Layer for Highly Stable Lithium Anode. Angewandte Chemie - International Edition, 2021, 60, 19852-19859.	7.2	62
8	MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 4468-4480.	3.8	14
9	A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Materials, 2020, 24, 272-280.	9.5	61
10	Defect Engineering of Carbonâ€based Electrocatalysts for Rechargeable Zincâ€air Batteries. Chemistry - an Asian Journal, 2020, 15, 3737-3751.	1.7	28
11	Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52836-52844.	4.0	15
12	Exploiting a High-Performance "Double-Carbon―Structure Co9S8/GN Bifunctional Catalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38202-38210.	4.0	26
13	<i>In situ</i> growth of CoP nanoparticles anchored on (N,P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery. Journal of Materials Chemistry A, 2020, 8, 19043-19049.	5.2	68
14	<p>DTPAA-Gd Functionalized Ultrasmall Au₁₅NCs Nanohybrids for Multimodal Imaging</p> . International Journal of Nanomedicine, 2020, Volume 15, 227-238.	3.3	7
15	Dual-active-sites design of CoSx anchored on nitrogen-doped carbon with tunable mesopore enables efficient Bi-Functional oxygen catalysis for ultra-stable zinc-air batteries. Journal of Power Sources, 2019, 438, 226953.	4.0	24
16	Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction. Nano Energy, 2019, 62, 700-708.	8.2	37
17	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	9.5	171
18	Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy, 2019, 61, 86-95.	8.2	134

#	Article	IF	CITATIONS
19	Hierarchical Porous Carbon Derived from Coal Tar Pitch Containing Discrete Co–Nx–C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8587-8596.	3.2	28
20	Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Advances, 2018, 8, 1706-1716.	1.7	19
21	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
22	Morphology controlled synthesis of SmMn2O5 nanocrystals via a surfactant-free route for Zn-air batteries. Journal of Power Sources, 2018, 396, 754-763.	4.0	25
23	Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS Omega, 2018, 3, 9126-9145.	1.6	62
24	Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters. Acta Chimica Sinica, 2018, 76, 709.	0.5	6
25	Using aminopyrine as a nitrogen-enriched small molecule precursor to synthesize high-performing nitrogen doped mesoporous carbon for catalyzing oxygen reduction reaction. RSC Advances, 2017, 7, 669-677.	1.7	7
26	Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. Journal of Catalysis, 2017, 352, 208-217.	3.1	44
27	Achieving high-powered Zn/air fuel cell through N and S co-doped hierarchically porous carbons with tunable active-sites as oxygen electrocatalysts. Journal of Power Sources, 2017, 365, 348-353.	4.0	33
28	N/S-Me (Fe, Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability. Applied Energy, 2016, 175, 468-478.	5.1	62
29	The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn–air battery. Physical Chemistry Chemical Physics, 2016, 18, 18665-18669.	1.3	37
30	A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chemistry, 2016, 18, 2699-2709.	4.6	70
31	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 6195-6206.	1.7	63
32	3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 3343-3350.	5.2	163
33	Nitrogen-Doped Hierarchical Mesoporous/Macroporous Carbon (H-C) Prepared from the Combined Silica Templates with Different Size for Oxygen Reduction. ECS Transactions, 2015, 66, 79-86.	0.3	5
34	Self-Reconstruction of Co/Co ₂ P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc–Air Flow Batteries. ACS Energy Letters, 0, , 1153-1161.	8.8	104