Daniel H Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3897990/publications.pdf

Version: 2024-02-01

DANIEL H CONZALEZ

#	Article	IF	CITATIONS
1	Homeoboxes in plant development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 1-19.	2.4	192
2	TCP transcription factors: architectures of plant form. Biomolecular Concepts, 2013, 4, 111-127.	2.2	166
3	TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant Journal, 2015, 84, 267-282.	5.7	116
4	Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis. Plant Physiology, 2016, 170, 74-85.	4.8	106
5	The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. International Journal of Molecular Sciences, 2018, 19, 662.	4.1	95
6	Differential Expression of the Arabidopsis Cytochrome c Genes Cytc-1 and Cytc-2. Evidence for the Involvement of TCP-Domain Protein-Binding Elements in Anther- and Meristem-Specific Expression of the Cytc-1 Gene. Plant Physiology, 2005, 139, 88-100.	4.8	91
7	Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Frontiers in Plant Science, 2014, 4, 551.	3.6	88
8	The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of Experimental Botany, 2012, 63, 809-823.	4.8	87
9	Overrepresentation of Elements Recognized by TCP-Domain Transcription Factors in the Upstream Regions of Nuclear Genes Encoding Components of the Mitochondrial Oxidative Phosphorylation Machinery. Plant Physiology, 2006, 141, 540-545.	4.8	81
10	The <i>Arabidopsis</i> class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal, 2011, 435, 143-155.	3.7	78
11	Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family Â. Plant Physiology, 2013, 162, 1434-1447.	4.8	70
12	A monomer–dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81-87.	3.7	68
13	Plant mitochondria under pathogen attack: A sigh of relief or a last breath?. Mitochondrion, 2014, 19, 238-244.	3.4	64
14	Class I and Class II TCP Transcription Factors Modulate SOC1-Dependent Flowering at Multiple Levels. Molecular Plant, 2017, 10, 1571-1574.	8.3	56
15	Determinants of the DNA Binding Specificity of Class I and Class II TCP Transcription Factors. Journal of Biological Chemistry, 2012, 287, 347-356.	3.4	54
16	A monomer‒dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81.	3.7	51
17	The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. Journal of Experimental Botany, 2005, 56, 2563-2571.	4.8	51
18	Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 990-1001.	1.0	50

DANIEL H GONZALEZ

#	Article	IF	CITATIONS
19	Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. Journal of Experimental Botany, 2011, 62, 4281-4294.	4.8	49
20	Class I TCP Transcription Factors Target the Gibberellin Biosynthesis Gene <i>GA20ox1</i> and the Growth-Promoting Genes <i>HBI1</i> and <i>PRE6</i> during Thermomorphogenic Growth in <i>Arabidopsis</i> . Plant and Cell Physiology, 2019, 60, 1633-1645.	3.1	49
21	Mitochondria and copper homeostasis in plants. Mitochondrion, 2014, 19, 269-274.	3.4	47
22	Transcriptional coordination of the biogenesis of the oxidative phosphorylation machinery in plants. Plant Journal, 2007, 51, 105-116.	5.7	42
23	D-Lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome C. Plant Physiology, 2016, 172, pp.01174.2016.	4.8	42
24	Class-I TCP Transcription Factors Activate the <i>SAUR63</i> Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. Plant Physiology, 2020, 182, 2096-2110.	4.8	42
25	Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. Plant Molecular Biology, 2007, 65, 343-355.	3.9	38
26	Metabolic regulation of genes encoding cytochrome c and cytochrome c oxidase subunit Vb in Arabidopsis. Plant, Cell and Environment, 2002, 25, 1605-1615.	5.7	37
27	Cytochrome <i>c</i> , a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments. Physiologia Plantarum, 2016, 157, 310-321.	5.2	37
28	The promoters of Arabidopsis thaliana genes AtCOX17-1 and -2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiologia Plantarum, 2007, 129, 123-134.	5.2	34
29	The promoter of the Arabidopsis nuclear gene COX5b-1, encoding subunit 5b of the mitochondrial cytochrome c oxidase, directs tissue-specific expression by a combination of positive and negative regulatory elements. Journal of Experimental Botany, 2004, 55, 1997-2004.	4.8	33
30	A segment containing a G-box and an ACGT motif confers differential expression characteristics and responses to the Arabidopsis Cytc-2 gene, encoding an isoform of cytochrome c. Journal of Experimental Botany, 2009, 60, 829-845.	4.8	32
31	The cytochrome <i>c</i> oxidase biogenesis factor AtCOX17 modulates stress responses in <scp>Arabidopsis</scp> . Plant, Cell and Environment, 2016, 39, 628-644.	5.7	32
32	Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology, 2021, 105, 147-159.	3.9	31
33	Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 5438-5453.	4.8	26
34	Conserved homeodomain cysteines confer redox sensitivity and influence the DNA binding properties of plant class III HD-Zip proteins. Archives of Biochemistry and Biophysics, 2007, 467, 41-47.	3.0	25
35	AtCOX10, a protein involved in haem <i>o</i> synthesis during cytochrome <i>c</i> oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. Journal of Experimental Botany, 2015, 66, 6761-6775.	4.8	25
36	Nuclear and mitochondrial genes encoding cytochrome c oxidase subunits respond differently to the same metabolic factors. Plant Physiology and Biochemistry, 2003, 41, 689-693.	5.8	24

DANIEL H GONZALEZ

#	Article	IF	CITATIONS
37	Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression. Journal of Experimental Botany, 2011, 62, 5025-5036.	4.8	24
38	Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response. Frontiers in Plant Science, 2014, 5, 87.	3.6	24
39	Carbohydrates modulate the expression of the sunflower cytochrome c gene at the mRNA level. Planta, 1998, 206, 410-415.	3.2	23
40	Cell-Type-Specific Expression of Plant Cytochrome cmRNA in Developing Flowers and Roots. Plant Physiology, 2001, 125, 1603-1610.	4.8	23
41	Expression of Sunflower Homeodomain Containing Proteins inEscherichia coli:Purification and Functional Studies. Protein Expression and Purification, 1998, 13, 97-103.	1.3	22
42	Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase. Plant Molecular Biology, 2009, 69, 729-743.	3.9	21
43	Structure of Homeodomain-Leucine Zipper/DNA Complexes Studied Using Hydroxyl Radical Cleavage of DNA and Methylation Interference. Biochemistry, 2005, 44, 16796-16803.	2.5	20
44	Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. Journal of Experimental Botany, 2021, 72, 4102-4118.	4.8	20
45	The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis. Plant Molecular Biology, 2019, 99, 621-638.	3.9	18
46	Interplay between cytochrome <i>c</i> and gibberellins during Arabidopsis vegetative development. Plant Journal, 2018, 94, 105-121.	5.7	17
47	Screening cDNA libraries by PCR using $\hat{\sf l} *$ sequencing primers and degenerate oligonucleotides. Trends in Genetics, 1993, 9, 231-232.	6.7	16
48	Binding properties of the complex formed by the Arabidopsis TALE homeodomain proteins STM and BLH3 to DNA containing single and double target sites. Biochimie, 2009, 91, 974-981.	2.6	15
49	Common Sets of Promoter Elements Determine the Expression Characteristics of Three Arabidopsis Genes Encoding Isoforms of Mitochondrial Cytochrome c Oxidase Subunit 6b. Plant and Cell Physiology, 2009, 50, 1393-1399.	3.1	14
50	The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. Journal of Experimental Botany, 2019, 70, 3177-3195.	4.8	14
51	Interaction of the PHD-Finger Homeodomain Protein HAT3.1 from Arabidopsis thaliana with DNA. Specific DNA Binding by a Homeodomain with Histidine at Position 51. Biochemistry, 2007, 46, 7416-7425.	2.5	13
52	Delta subclass HD-Zip proteins and a B-3 AP2/ERF transcription factor interact with promoter elements required for expression of the Arabidopsis cytochrome c oxidase 5b-1 gene. Plant Molecular Biology, 2012, 80, 157-167.	3.9	13
53	Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems. Plant Physiology and Biochemistry, 2016, 108, 57-62.	5.8	13
54	<i>Arabidopsis thaliana SURFEIT1</i> â€like genes link mitochondrial function to early plant development and hormonal growth responses. Plant Journal, 2020, 103, 690-704.	5.7	13

DANIEL H GONZALEZ

#	Article	IF	CITATIONS
55	<scp>TCP15</scp> interacts with <scp>GOLDEN2â€LIKE</scp> 1 to control cotyledon opening in Arabidopsis. Plant Journal, 2022, 110, 748-763.	5.7	13
56	Expression of sunflower cytochrome c mRNA is tissue-specific and controlled by nitrate and light. Physiologia Plantarum, 1997, 99, 342-347.	5.2	11
57	Identification of regulatory elements involved in expression and induction by sucrose and UVâ€B light of the <i>Arabidopsis thaliana COX5bâ€2</i> gene, encoding an isoform of cytochrome <i>c</i> oxidase subunit 5b. Physiologia Plantarum, 2009, 137, 213-224.	5.2	11
58	Genes encoding cytochrome c oxidase subunit 5c from sunflower (Helianthus annuus L.) are regulated by nitrate and oxygen availability. Plant Science, 2002, 163, 897-905.	3.6	10
59	Arabidopsis SCO Proteins Oppositely Influence Cytochrome c Oxidase Levels and Gene Expression during Salinity Stress. Plant and Cell Physiology, 2019, 60, 2769-2784.	3.1	8
60	The sunflower TLDc-containing protein HaOXR2 confers tolerance to oxidative stress and waterlogging when expressed in maize plants. Plant Science, 2020, 300, 110626.	3.6	8
61	Breaking boundaries: exploring short―and longâ€distance mitochondrial signalling in plants. New Phytologist, 2021, 232, 494-501.	7.3	8
62	<i>Arabidopsis thaliana</i> TCP15 interacts with the MIXTA-like transcription factor MYB106/NOECK. Plant Signaling and Behavior, 2021, 16, 1938432.	2.4	7
63	Divergent regulatory mechanisms in the response of respiratory chain component genes to carbohydrates suggests a model for gene evolution after duplication. Plant Signaling and Behavior, 2009, 4, 1179-1181.	2.4	6
64	Biogenesis of the oxidative phosphorylation machinery in plants. From gene expression to complex assembly. Frontiers in Plant Science, 2014, 5, 225.	3.6	5
65	Methods to Study Transcription Factor Structure and Function. , 2016, , 13-33.		4
66	Cytochrome <i>c</i> and the transcription factor ABI4 establish a molecular link between mitochondria and ABAâ€dependent seed germination. New Phytologist, 2022, 235, 1780-1795.	7.3	4
67	Cytochrome c Deficiency Differentially Affects the In Vivo Mitochondrial Electron Partitioning and Primary Metabolism Depending on the Photoperiod. Plants, 2021, 10, 444.	3.5	3