Qing Wei Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3897845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials, 2013, 262, 189-211.	12.4	780
2	Brominated flame retardants (BFRs): A review on environmental contamination in China. Chemosphere, 2016, 150, 479-490.	8.2	200
3	Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 2009, 76, 36-42.	8.2	173
4	Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicology and Environmental Safety, 2019, 175, 289-298.	6.0	172
5	Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach. Environmental Pollution, 2017, 231, 1446-1452.	7.5	117
6	Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 2015, 117, 132-140.	6.0	115
7	Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. Emerging Contaminants, 2016, 2, 145-147.	4.9	77
8	Screening level ecological risk assessment for phenols in surface water of the Taihu Lake. Chemosphere, 2010, 80, 998-1005.	8.2	75
9	Dibutyl Phthalate Contributes to the Thyroid Receptor Antagonistic Activity in Drinking Water Processes. Environmental Science & Technology, 2010, 44, 6863-6868.	10.0	74
10	Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Science of the Total Environment, 2017, 587-588, 177-184.	8.0	71
11	Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system. Water Research, 2018, 138, 272-281.	11.3	66
12	Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China. Environmental Pollution, 2018, 235, 121-128.	7.5	65
13	Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. Journal of Environmental Sciences, 2009, 21, 675-685.	6.1	57
14	Kinetics and mechanisms of the formation of chlorinated and oxygenated polycyclic aromatic hydrocarbons during chlorination. Chemical Engineering Journal, 2018, 351, 248-257.	12.7	54
15	Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk. Science of the Total Environment, 2019, 653, 423-430.	8.0	53
16	Levels, Distribution, and Health Risk of Phthalate Esters in Urban Soils of Beijing, China. Journal of Environmental Quality, 2011, 40, 1643-1651.	2.0	51
17	Estimating the use of antibiotics for humans across China. Chemosphere, 2016, 144, 1384-1390.	8.2	51
18	Historical intake and elimination of polychlorinated biphenyls and organochlorine pesticides by the Australian population reconstructed from biomonitoring data. Environment International, 2015, 74, 82-88.	10.0	50

QING WEI BU

#	Article	IF	CITATIONS
19	A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China. Science of the Total Environment, 2021, 786, 147452.	8.0	47
20	Polybrominated diphenyl ethers and novel brominated flame retardants in indoor dust of different microenvironments in Beijing, China. Environment International, 2019, 122, 159-167.	10.0	46
21	Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. Journal of Hazardous Materials, 2012, 217-218, 286-292.	12.4	44
22	The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Chemosphere, 2018, 211, 640-647.	8.2	42
23	Distribution and sources of DDTs in urban soils with six types of land use in Beijing, China. Journal of Hazardous Materials, 2010, 174, 100-107.	12.4	41
24	Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China. Environmental Geochemistry and Health, 2009, 31, 119-131.	3.4	40
25	Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment. Chemosphere, 2016, 163, 535-543.	8.2	40
26	Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. Science of the Total Environment, 2022, 806, 150691.	8.0	38
27	Contrasting effects of black carbon amendments on PAH bioaccumulation by Chironomus plumosus larvae in two distinct sediments: Role of water absorption and particle ingestion. Environmental Pollution, 2011, 159, 1905-1913.	7.5	37
28	Emerging Organic Contaminants in Chinese Surface Water: Identification of Priority Pollutants. Engineering, 2022, 11, 111-125.	6.7	37
29	Characterization of the reactivity and chlorinated products of carbazole during aqueous chlorination. Environmental Pollution, 2017, 225, 412-418.	7.5	36
30	Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry. Journal of Environmental Sciences, 2013, 25, 2313-2323.	6.1	35
31	Review of Screening Systems for Prioritizing Chemical Substances. Critical Reviews in Environmental Science and Technology, 2013, 43, 1011-1041.	12.8	34
32	Influence of Air Pollution on Inhalation and Dermal Exposure of Human to Organophosphate Flame Retardants: A Case Study During a Prolonged Haze Episode. Environmental Science & Technology, 2019, 53, 3880-3887.	10.0	34
33	Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of the Coal Mining City Wuhai, China. Journal of Chemistry, 2020, 2020, 1-10.	1.9	34
34	Derivation of aquatic predicted no-effect concentration (PNEC) for ibuprofen and sulfamethoxazole based on various toxicity endpoints and the associated risks. Chemosphere, 2018, 193, 223-229.	8.2	33
35	Function of a landscape lake in the reduction of biotoxicity related to trace organic chemicals from reclaimed water. Journal of Hazardous Materials, 2016, 318, 663-670.	12.4	31
36	Identifying targets of potential concern by a screening level ecological risk assessment of human use pharmaceuticals in China. Chemosphere, 2020, 246, 125818.	8.2	31

Qing Wei Bu

#	Article	IF	CITATIONS
37	Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water. Ecotoxicology and Environmental Safety, 2019, 181, 241-247.	6.0	28
38	Amplification effect of haze on human exposure to halogenated flame retardants in atmospheric particulate matter and the corresponding mechanism. Journal of Hazardous Materials, 2018, 359, 491-499.	12.4	26
39	Screening for over 1000 organic micropollutants in surface water and sediments in the Liaohe River watershed. Chemosphere, 2015, 138, 519-525.	8.2	23
40	Polycyclic musks in surface water and sediments from an urban catchment in the megacity Beijing, China. Environmental Pollution, 2020, 263, 114548.	7.5	23
41	Pay attention to non-wastewater emission pathways of pharmaceuticals into environments. Chemosphere, 2016, 165, 515-518.	8.2	22
42	Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry. Science of the Total Environment, 2017, 609, 123-131.	8.0	20
43	A gas chromatography/mass spectrometry method for the simultaneous analysis of 50 phenols in wastewater using deconvolution technology. Science Bulletin, 2011, 56, 275-284.	1.7	19
44	Identification and ranking of the risky organic contaminants in the source water of the Danjiangkou reservoir. Frontiers of Environmental Science and Engineering, 2014, 8, 42-53.	6.0	19
45	Transformation reactivity of parent polycyclic aromatic hydrocarbons and the formation trend of halogenated polycyclic aromatic hydrocarbons in the presence of bromide ion during chlorination. Chemical Engineering Journal, 2020, 400, 125901.	12.7	19
46	A high throughout semi-quantification method for screening organic contaminants in river sediments. Journal of Environmental Management, 2014, 143, 135-139.	7.8	16
47	Occurrence, health risk assessment and regional impact of parent, halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water. Journal of Hazardous Materials, 2021, 413, 125360.	12.4	16
48	Vertical distribution and environmental significance of sulfur and oxygen heterocyclic aromatic hydrocarbons in soil samples collected from Beijing, China. Environmental Pollution, 2008, 153, 457-467.	7.5	14
49	A new method for identifying persistent, bioaccumulative, and toxic organic pollutants in coking wastewater. Chemical Engineering Research and Design, 2020, 144, 158-165.	5.6	14
50	Role of hypobromous acid in the transformation of polycyclic aromatic hydrocarbons during chlorination. Water Research, 2021, 207, 117787.	11.3	14
51	The effects of different electron donors on anaerobic nitrogen transformations and denitrification processes in Lake Taihu sediments. Hydrobiologia, 2007, 581, 71-77.	2.0	13
52	Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China. Environmental Pollution, 2017, 231, 1463-1468.	7.5	13
53	Preliminary assessment on exposure of four typical populations to potentially toxic metals by means of skin wipes under the influence of haze pollution. Science of the Total Environment, 2018, 613-614, 886-893.	8.0	12
54	Retinoid X receptor activities of source waters in China and their removal efficiencies during drinking water treatment processes. Science Bulletin, 2012, 57, 595-600.	1.7	10

QING WEI BU

#	Article	IF	CITATIONS
55	Transformation of Bisphenol AF during Aqueous Chlorination: Kinetics, Mechanisms, and Influence of pH. ACS ES&T Water, 2021, 1, 449-458.	4.6	10
56	The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	8
57	Identifying unknown antibiotics with persistent and bioaccumulative properties and ecological risk in river water in Beijing, China. Environmental Science and Pollution Research, 2021, 28, 13515-13523.	5.3	7
58	Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 784-789.	2.7	5
59	Polycyclic Aromatic Hydrocarbons in Surface Water from Wuhai and Lingwu Sections of the Yellow River: Concentrations, Sources, and Ecological Risk. Journal of Chemistry, 2020, 2020, 1-8.	1.9	5
60	Distribution and origin of biologically available phosphorus in the water of the Meiliang Bay in summer. Science in China Series D: Earth Sciences, 2006, 49, 146-153.	0.9	3
61	Data on contents of fifty phenolic compounds in three rivers in Tianjin, China. Data in Brief, 2018, 18, 124-130.	1.0	3
62	Contribution of atmospheric deposition to halogenated polycyclic aromatic hydrocarbons in surface sediments: A validation study. Science of the Total Environment, 2022, 815, 152889.	8.0	3
63	Using a fugacity model to determine the degradation rate of typical polycyclic musks in the field: A case study in the North Canal River watershed of Beijing, China. Journal of Environmental Management, 2022, 302, 114096.	7.8	2
64	The effects of carbon substrates for PAHs degradation and microbial community structure changing in anaerobic sediments of Taihu Lake. Diqiu Huaxue, 2006, 25, 183-183.	0.5	1
65	Sorption of Polycyclic Musks on Soil Components of Different Aggregate Sizes: The Effect of Organic Matter–Mineral Interactions. Bulletin of Environmental Contamination and Toxicology, 0, , .	2.7	1
66	Assessment of Available Phosphorus in the Lake Sediments Using an Innovative Composite Membrane. , 2010, , .		0
67	Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable?. Journal of Chemistry, 2021, 2021, 1-8.	1.9	0