Igor Grigoriev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3897576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313, 1596-1604.	6.0	3,945
2	The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457, 551-556.	13.7	2,642
3	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	6.0	2,354
4	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	6.0	1,712
5	The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453, 1064-1071.	13.7	1,496
6	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	13.7	1,458
7	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
8	Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization. Science, 2007, 317, 86-94.	6.0	1,423
9	MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 2014, 42, D699-D704.	6.5	1,187
10	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea) Tj ETQq0	0	Overlock 10 ⁻ 1,116
11	A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108, 1028-1046.	0.8	1,092

12	The Ecoresponsive Genome of <i>Daphnia pulex</i> . Science, 2011, 331, 555-561.	6.0	1,086
13	Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science, 2006, 313, 1261-1266.	6.0	1,059
14	The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 2008, 451, 783-788.	13.7	1,006
15	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452, 88-92.	13.7	1,003
16	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	9.4	870
17	Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011, 9, 749-759.	13.6	814
18	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	9.4	814

#	Article	IF	CITATIONS
19	The Trichoplax genome and the nature of placozoans. Nature, 2008, 454, 955-960.	13.7	801
20	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	6.0	794
21	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	3.3	717
22	The Genome of the Western Clawed Frog <i>Xenopus tropicalis</i> . Science, 2010, 328, 633-636.	6.0	708
23	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	3.3	652
24	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	3.3	640
25	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
26	Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9923-9928.	3.3	595
27	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	3.8	594
28	Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes <i>Micromonas</i> . Science, 2009, 324, 268-272.	6.0	591
29	The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Research, 2014, 42, D26-D31.	6.5	590
30	Insights into bilaterian evolution from three spiralian genomes. Nature, 2013, 493, 526-531.	13.7	564
31	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	3.3	563
32	Genomic Analysis of Organismal Complexity in the Multicellular Green Alga <i>Volvox carteri</i> . Science, 2010, 329, 223-226.	6.0	536
33	Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis. PLoS Genetics, 2011, 7, e1002070.	1.5	532
34	Genome, transcriptome, and secretome analysis of wood decay fungus <i>Postia placenta</i> supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1954-1959.	3.3	530
35	The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science, 2011, 333, 762-765.	6.0	512
36	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010, 28, 957-963.	9.4	490

#	Article	IF	CITATIONS
37	Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 2007, 25, 319-326.	9.4	449
38	Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 2013, 499, 209-213.	13.7	448
39	The <i>Chlorella variabilis</i> NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex Â. Plant Cell, 2010, 22, 2943-2955.	3.1	441
40	The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Research, 2012, 40, D26-D32.	6.5	439
41	Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, 29, 922-927.	9.4	428
42	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
43	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	1.5	402
44	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	13.5	399
45	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
46	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	3.3	359
47	Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLoS ONE, 2015, 10, e0132628.	1.1	340
48	Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 2017, 541, 536-540.	13.7	332
49	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	2.4	329
50	Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods, 2007, 4, 495-500.	9.0	322
51	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	3.3	302
52	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	9.4	292
53	The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biology, 2012, 13, R39.	13.9	289
54	Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 2016, 351, 1192-1195.	6.0	266

#	Article	IF	CITATIONS
55	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	1.4	264
56	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	1.2	262
57	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	3.3	259
58	Phylogenetic and phylogenomic overview of the Polyporales. Mycologia, 2013, 105, 1350-1373.	0.8	259
59	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	5.8	258
60	Niche of harmful alga <i>Aureococcus anophagefferens</i> revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4352-4357.	3.3	256
61	High-resolution metagenomics targets specific functional types in complex microbial communities. Nature Biotechnology, 2008, 26, 1029-1034.	9.4	254
62	Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi <i>Postia placenta</i> and <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 2010, 76, 3599-3610.	1.4	237
63	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	1.5	232
64	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	1.5	226
65	Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Molecular Biology and Evolution, 2016, 33, 959-970.	3.5	213
66	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	3.5	210
67	High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont <i>Rhizophagus irregularis</i> . New Phytologist, 2018, 220, 1161-1171.	3.5	206
68	Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution, 2019, 3, 668-678.	3.4	187
69	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	3.5	185
70	A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2017, 2, 17087.	5.9	183
71	Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics, 2019, 20, 485.	1.2	181
72	Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles. PLoS Genetics, 2016, 12, e1006108.	1.5	177

#	Article	IF	CITATIONS
73	Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. Genome Biology and Evolution, 2015, 7, 1590-1601.	1.1	175
74	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
75	The ectomycorrhizal fungus <i>Paxillus involutus</i> converts organic matter in plant litter using a trimmed brownâ€rot mechanism involving Fenton chemistry. Environmental Microbiology, 2012, 14, 1477-1487.	1.8	173
76	Structural Characterization of the Reaction Pathway in Phosphoserine Phosphatase: Crystallographic "snapshots―of Intermediate States. Journal of Molecular Biology, 2002, 319, 421-431.	2.0	170
77	The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Microbiology Spectrum, 2017, 5, .	1.2	169
78	Comparative Genomics of a Plant-Pathogenic Fungus, <i>Pyrenophora tritici-repentis</i> , Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence. G3: Genes, Genomes, Genetics, 2013, 3, 41-63.	0.8	167
79	Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the United States of America, 2011, 108, 13212-13217.	3.3	163
80	Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Research, 2018, 28, 569-580.	2.4	163
81	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	9.4	160
82	The sequence and analysis of duplication-rich human chromosome 16. Nature, 2004, 432, 988-994.	13.7	156
83	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	5.8	156
84	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	3.4	145
85	Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genetics, 2018, 14, e1007322.	1.5	143
86	Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 2009, 10, 567.	1.2	141
87	Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biology, 2011, 12, R20.	13.9	141
88	Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 2015, 76, 78-92.	0.9	141
89	Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 2018, 8, 6321.	1.6	138
90	101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Studies in Mycology, 2020, 96, 141-153.	4.5	135

#	Article	IF	CITATIONS
91	Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genetics and Biology, 2006, 43, 343-356.	0.9	134
92	Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nature Communications, 2014, 5, 4471.	5.8	133
93	Comparative genomics of <i>Rhizophagus irregularis</i> , <i> R.Âcerebriforme</i> , <i> R.Âdiaphanus</i> and <i>Gigaspora rosea</i> highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222, 1584-1598.	3.5	133
94	Analysis of clock-regulated genes in <i>Neurospora</i> reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	3.3	131
95	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	3.3	126
96	Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics, 2012, 13, 444.	1.2	125
97	Fungal and plant gene expression in the <i>Tulasnella calospora</i> – <i>Serapias vomeracea</i> symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytologist, 2017, 213, 365-379.	3.5	125
98	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125
99	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
100	Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biology, 2017, 15, e2004050.	2.6	118
101	Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nature Microbiology, 2021, 6, 499-511.	5.9	116
102	Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7409-7418.	3.3	115
103	Sequencing the fungal tree of life. New Phytologist, 2011, 190, 818-821.	3.5	107
104	Significant Alteration of Gene Expression in Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium by Plant Species. Applied and Environmental Microbiology, 2011, 77, 4499-4507.	1.4	106
105	Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Research, 2010, 38, 5535-5541.	6.5	104
106	The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genetics and Biology, 2012, 49, 217-226.	0.9	103
107	Genomics of wood-degrading fungi. Fungal Genetics and Biology, 2014, 72, 82-90.	0.9	103
108	The DNA sequence and comparative analysis of human chromosome 5. Nature, 2004, 431, 268-274.	13.7	102

#	Article	IF	CITATIONS
109	The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209.	2.1	102
110	Leveraging single-cell genomics to expand the fungal tree of life. Nature Microbiology, 2018, 3, 1417-1428.	5.9	101
111	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	2.0	100
112	Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. ELife, 2018, 7, .	2.8	98
113	The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 2019, 20, 605.	1.2	98
114	Diversity of cytosine methylation across the fungal tree of life. Nature Ecology and Evolution, 2019, 3, 479-490.	3.4	98
115	PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 2021, 49, D1004-D1011.	6.5	98
116	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	3.4	95
117	Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea. PLoS ONE, 2015, 10, e0141586.	1.1	95
118	Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in Alternaria brassicicola. PLoS Pathogens, 2012, 8, e1002974.	2.1	91
119	Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood. PLoS Genetics, 2014, 10, e1004759.	1.5	90
120	Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nature Communications, 2017, 8, 1843.	5.8	85
121	At the nexus of three kingdoms: the genome of the mycorrhizal fungus <i>Gigaspora margarita</i> provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22, 122-141.	1.8	84
122	Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 2015, 6, 978.	1.5	83
123	The Mutualist <i>Laccaria bicolor</i> Expresses a Core Gene Regulon During the Colonization of Diverse Host Plants and a Variable Regulon to Counteract Host-Specific Defenses. Molecular Plant-Microbe Interactions, 2015, 28, 261-273.	1.4	82
124	Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytologist, 2019, 222, 511-525.	3.5	81
125	Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete <i><scp>H</scp>ebeloma cylindrosporum</i> and its involvement in ectomycorrhizal symbiosis. New Phytologist, 2015, 208, 1169-1187.	3.5	78
126	Comparative and transcriptional analysis of the predicted secretome in the lignocelluloseâ€degrading basidiomycete fungus <i>Pleurotus ostreatus</i> . Environmental Microbiology, 2016, 18, 4710-4726.	1.8	77

#	Article	IF	CITATIONS
127	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	1.8	77
128	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	1.5	77
129	A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism. PLoS Genetics, 2017, 13, e1006737.	1.5	76
130	The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6003-6013.	3.3	75
131	Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics, 2016, 17, 267.	1.2	74
132	Population genomics of picophytoplankton unveils novel chromosome hypervariability. Science Advances, 2017, 3, e1700239.	4.7	73
133	The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biology, 2016, 120, 26-42.	1.1	72
134	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	3.5	72
135	FunGAP: Fungal Genome Annotation Pipeline using evidence-based gene model evaluation. Bioinformatics, 2017, 33, 2936-2937.	1.8	70
136	Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nature Communications, 2018, 9, 1887.	5.8	70
137	Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus <i>Neurospora tetrasperma</i> . Genetics, 2011, 189, 55-69.	1.2	69
138	Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2011, 1, 303-316.	0.8	68
139	Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15102-15107.	3.3	68
140	Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnology for Biofuels, 2015, 8, 216.	6.2	67
141	Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage. Frontiers in Microbiology, 2016, 7, 238.	1.5	66
142	Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Molecular Biology and Evolution, 2017, 34, 35-44.	3.5	65
143	Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3451-3456.	3.3	63
144	Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast <i>Trichosporon oleaginosus</i> : Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. MBio, 2015, 6, e00918.	1.8	63

#	Article	IF	CITATIONS
145	Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nature Communications, 2014, 5, 3745.	5.8	62
146	The gold-standard genome of <i>Aspergillus niger</i> NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Studies in Mycology, 2018, 91, 61-78.	4.5	62
147	Fungalâ€specific transcription factor <i><scp>A</scp>b<scp>P</scp>f2</i> activates pathogenicity in <i><scp>A</scp>Alternaria brassicicola</i> . Plant Journal, 2013, 75, 498-514.	2.8	58
148	Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Frontiers in Microbiology, 2018, 9, 276.	1.5	58
149	Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communications, 2021, 12, 7227.	5.8	58
150	Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Diversity, 2020, 104, 267-289.	4.7	57
151	Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi. Genome Biology and Evolution, 2014, 6, 1564-1578.	1.1	54
152	Multiâ€omic analyses of exogenous nutrient bag decomposition by the black morel <i>Morchella importuna</i> reveal sustained carbon acquisition and transferring. Environmental Microbiology, 2019, 21, 3909-3926.	1.8	54
153	Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Applied Microbiology and Biotechnology, 2017, 101, 2603-2618.	1.7	53
154	Genomics and Development of <i>Lentinus tigrinus</i> : A White-Rot Wood-Decaying Mushroom with Dimorphic Fruiting Bodies. Genome Biology and Evolution, 2018, 10, 3250-3261.	1.1	53
155	Comparative genomics reveals unique woodâ€decay strategies and fruiting body development in the Schizophyllaceae. New Phytologist, 2019, 224, 902-915.	3.5	53
156	The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape. PLoS ONE, 2011, 6, e23624.	1.1	53
157	The ectomycorrhizal fungus <i>Pisolithus microcarpus</i> encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	53
158	Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen <i><scp>M</scp>ixia osmundae</i> . New Phytologist, 2014, 202, 554-564.	3.5	52
159	Fungal Endophytes of <i>Populus trichocarpa</i> Alter Host Phenotype, Gene Expression, and Rhizobiome Composition. Molecular Plant-Microbe Interactions, 2019, 32, 853-864.	1.4	52
160	Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi. PLoS ONE, 2016, 11, e0157844.	1.1	49
161	Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genetics and Biology, 2012, 49, 199-209.	0.9	47
162	Visual Comparative Omics of Fungi for Plant Biomass Deconstruction. Frontiers in Microbiology, 2016, 7, 1335.	1.5	46

#	Article	IF	CITATIONS
163	Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME Journal, 2021, 15, 421-434.	4.4	46
164	Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass. Biotechnology for Biofuels, 2018, 11, 201.	6.2	45
165	Duplications and losses in gene families of rust pathogens highlight putative effectors. Frontiers in Plant Science, 2014, 5, 299.	1.7	44
166	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	1.8	44
167	Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation. PLoS ONE, 2015, 10, e0130381.	1.1	43
168	Genetic dissection of interspecific differences in yeast thermotolerance. Nature Genetics, 2018, 50, 1501-1504.	9.4	43
169	Broad Genomic Sampling Reveals a Smut Pathogenic Ancestry of the Fungal Clade Ustilaginomycotina. Molecular Biology and Evolution, 2018, 35, 1840-1854.	3.5	43
170	<i>Phyllosticta citricarpa</i> and sister species of global importance to <i>Citrus</i> . Molecular Plant Pathology, 2019, 20, 1619-1635.	2.0	43
171	A Zinc-Finger-Family Transcription Factor, <i>AbVf19</i> , Is Required for the Induction of a Gene Subset Important for Virulence in <i>Alternaria brassicicola</i> . Molecular Plant-Microbe Interactions, 2012, 25, 443-452.	1.4	41
172	Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Applied Microbiology and Biotechnology, 2019, 103, 8145-8155.	1.7	41
173	The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, <i>Aureococcus anophagefferens</i> . ISME Journal, 2013, 7, 1333-1343.	4.4	39
174	Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 2021, 230, 774-792.	3.5	37
175	Detection of protein fold similarity based on correlation of amino acid properties. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14318-14323.	3.3	36
176	<i>Dichomitus squalens</i> partially tailors its molecular responses to the composition of solid wood. Environmental Microbiology, 2018, 20, 4141-4156.	1.8	36
177	Genome-wide analysis of cytochrome P450s of Trichoderma spp.: annotation and evolutionary relationships. Fungal Biology and Biotechnology, 2018, 5, 12.	2.5	36
178	Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics, 2009, 10, 61.	1.2	35
179	Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. MSphere, 2018, 3, .	1.3	35
180	Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales). Frontiers in Microbiology, 2018, 9, 3058.	1.5	35

#	Article	IF	CITATIONS
181	Anaerobic gut fungi are an untapped reservoir of natural products. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
182	Comparative Genomics Analysis of <i>Trichoderma reesei</i> Strains. Industrial Biotechnology, 2013, 9, 352-367.	0.5	34
183	Genome Sequence of the Chestnut Blight Fungus <i>Cryphonectria parasitica</i> EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen. Phytopathology, 2020, 110, 1180-1188.	1.1	34
184	The draft genome sequence of the ascomycete fungus Penicillium subrubescens reveals a highly enriched content of plant biomass related CAZymes compared to related fungi. Journal of Biotechnology, 2017, 246, 1-3.	1.9	33
185	The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi. Molecular Biology and Evolution, 2020, 37, 2838-2856.	3.5	33
186	Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. MSystems, 2021, 6, .	1.7	33
187	Fungal ecological strategies reflected in gene transcription ―a case study of two litter decomposers. Environmental Microbiology, 2020, 22, 1089-1103.	1.8	32
188	Survey of Early-Diverging Lineages of Fungi Reveals Abundant and Diverse Mycoviruses. MBio, 2020, 11, .	1.8	32
189	Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus <i>Pycnoporus</i> . DNA Research, 2020, 27, .	1.5	32
190	Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics, 2015, 16, 326.	1.2	31
191	Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon. Molecular Phylogenetics and Evolution, 2017, 117, 10-29.	1.2	30
192	Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 17117-17130.	1.6	30
193	An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant, Cell and Environment, 2020, 43, 1047-1068.	2.8	30
194	Genome-wide role of codon usage on transcription and identification of potential regulators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
195	The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nature Communications, 2021, 12, 5483.	5.8	29
196	Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach. Soil Biology and Biochemistry, 2021, 155, 108170.	4.2	28
197	Draft Genome Sequence of <i>Microdochium bolleyi</i> , a Dark Septate Fungal Endophyte of Beach Grass. Genome Announcements, 2016, 4, .	0.8	27
198	Inorganic nitrogen availability alters <i>Eucalyptus grandis</i> receptivity to the ectomycorrhizal fungus <i>Pisolithus albus</i> but not symbiotic nitrogen transfer. New Phytologist, 2020, 226, 221-231.	3.5	27

#	Article	IF	CITATIONS
199	Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, <i>Basidiobolus</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3417-3433.	0.8	27
200	Genome-scale phylogenetics reveals a monophyletic Zoopagales (Zoopagomycota, Fungi). Molecular Phylogenetics and Evolution, 2019, 133, 152-163.	1.2	26
201	Expanding genomics of mycorrhizal symbiosis. Frontiers in Microbiology, 2014, 5, 582.	1.5	25
202	Fungal Genomics. Advances in Botanical Research, 2014, , 1-52.	0.5	25
203	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25
204	Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. Biotechnology for Biofuels, 2019, 12, 76.	6.2	25
205	Full Genome of Phialocephala scopiformis DAOMC 229536, a Fungal Endophyte of Spruce Producing the Potent Anti-Insectan Compound Rugulosin. Genome Announcements, 2016, 4, .	0.8	24
206	Improved High-Quality Draft Genome Sequence of the Eurypsychrophile <i>Rhodotorula</i> sp. JG1b, Isolated from Permafrost in the Hyperarid Upper-Elevation McMurdo Dry Valleys, Antarctica. Genome Announcements, 2016, 4, .	0.8	24
207	The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. Biotechnology for Biofuels, 2017, 10, 149.	6.2	24
208	Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli. Studies in Mycology, 2018, 91, 79-99.	4.5	24
209	Secretome Analysis from the Ectomycorrhizal Ascomycete Cenococcum geophilum. Frontiers in Microbiology, 2018, 9, 141.	1.5	24
210	Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes. Applied and Environmental Microbiology, 2018, 84, .	1.4	24
211	Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Scientific Reports, 2021, 11, 3217.	1.6	24
212	The fungus that came in from the cold: dry rot's pre-adapted ability to invade buildings. ISME Journal, 2018, 12, 791-801.	4.4	23
213	Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation. IMA Fungus, 2021, 12, 21.	1.7	23
214	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	3.5	23
215	The ectomycorrhizal basidiomycete <i>Hebeloma cylindrosporum</i> undergoes early waves of transcriptional reprogramming prior to symbiotic structures differentiation. Environmental Microbiology, 2017, 19, 1338-1354.	1.8	22
216	Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Applied and Environmental Microbiology, 2018, 84, .	1.4	22

#	Article	IF	CITATIONS
217	Draft Genome Sequences of Three Monokaryotic Isolates of the White-Rot Basidiomycete Fungus Dichomitus squalens. Microbiology Resource Announcements, 2019, 8, .	0.3	22
218	A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Communications Biology, 2021, 4, 333.	2.0	22
219	Fungal Genomic Annotation. Applied Mycology and Biotechnology, 2006, , 123-142.	0.3	21
220	Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation. Journal of Biotechnology, 2015, 211, 42-43.	1.9	21
221	The White-Rot Basidiomycete Dichomitus squalens Shows Highly Specific Transcriptional Response to Lignocellulose-Related Aromatic Compounds. Frontiers in Bioengineering and Biotechnology, 2019, 7, 229.	2.0	21
222	Mitovirus and Mitochondrial Coding Sequences from Basal Fungus Entomophthora muscae. Viruses, 2019, 11, 351.	1.5	21
223	Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus <i>Dichomitus squalens</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	21
224	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	3.5	21
225	Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnology for Biofuels, 2021, 14, 234.	6.2	21
226	Comparative genomics of Coniophora olivacea reveals different patterns of genome expansion in Boletales. BMC Genomics, 2017, 18, 883.	1.2	20
227	Early Diverging Insect-Pathogenic Fungi of the Order Entomophthorales Possess Diverse and Unique Subtilisin-Like Serine Proteases. G3: Genes, Genomes, Genetics, 2018, 8, 3311-3319.	0.8	20
228	The obligate alkalophilic sodaâ€lake fungus Sodiomyces alkalinus has shifted to a protein diet. Molecular Ecology, 2018, 27, 4808-4819.	2.0	20
229	Draft Genome Sequence of Tuber borchii Vittad., a Whitish Edible Truffle. Genome Announcements, 2018, 6, .	0.8	20
230	Genome Sequence of the Plant Growth Promoting Fungus <i>Serendipita vermifera</i> subsp. <i>bescii</i> : The First Native Strain from North America. Phytobiomes Journal, 2018, 2, 62-63.	1.4	20
231	Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12. Genomics Data, 2017, 14, 21-23.	1.3	19
232	Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in Aspergillus niger. Frontiers in Bioengineering and Biotechnology, 2019, 7, 249.	2.0	19
233	Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle. New Phytologist, 2021, 229, 2917-2932.	3.5	19
234	Chromosome assembled and annotated genome sequence of <i>Aspergillus flavus</i> NRRL 3357. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19

#	Article	IF	CITATIONS
235	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	3.5	19
236	Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnology for Biofuels, 2017, 10, 35.	6.2	18
237	Broadâ€specificity GH131 βâ€glucanases are a hallmark of fungi and oomycetes that colonize plants. Environmental Microbiology, 2019, 21, 2724-2739.	1.8	18
238	Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants. BMC Biology, 2019, 17, 88.	1.7	18
239	Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 2020, 10, e00107.	1.9	18
240	Genomic adaptations of the green alga Dunaliella salina to life under high salinity. Algal Research, 2020, 50, 101990.	2.4	18
241	IMITATION SWITCH is required for normal chromatin structure and gene repression in PRC2 target domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
242	Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal <i><scp>A</scp>manita</i> . New Phytologist, 2015, 205, 1552-1564.	3.5	17
243	Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 2015, 3, .	0.8	17
244	Comparative Genomics of the Ectomycorrhizal Sister Species <i>Rhizopogon vinicolor</i> and <i>Rhizopogon vesiculosus</i> (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type <i>B</i> Locus. G3: Genes, Genomes, Genetics, 2017, 7, 1775-1789.	0.8	17
245	The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of Eucalyptus grandis Roots. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	17
246	Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus Aureobasidium pullulans to identify potential biocontrol genes. Microbial Cell, 2021, 8, 184-202.	1.4	17
247	Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Current Biology, 2021, 31, 3905-3914.e6.	1.8	17
248	Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. Microbiome, 2022, 10, 67.	4.9	17
249	Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES. Life, 2020, 10, 362.	1.1	16
250	Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions. Scientific Reports, 2020, 10, 5250.	1.6	16
251	Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. Journal of Advanced Research, 2022, 38, 91-106.	4.4	16
252	CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. Cell Surface, 2021, 7, 100050.	1.5	16

#	Article	IF	CITATIONS
253	Draft Genome Sequence of the White-Rot Fungus <i>Obba rivulosa</i> 3A-2. Genome Announcements, 2016, 4, .	0.8	15
254	DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
255	Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genetics and Biology, 2016, 86, 9-19.	0.9	14
256	Draft Genome Sequence of <i>Coniochaeta ligniaria</i> NRRL 30616, a Lignocellulolytic Fungus for Bioabatement of Inhibitors in Plant Biomass Hydrolysates. Genome Announcements, 2017, 5, .	0.8	14
257	Fungal Genome Annotation. Methods in Molecular Biology, 2018, 1775, 171-184.	0.4	14
258	Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics, 2019, 213, 1545-1563.	1.2	14
259	Unique genomic traits for cold adaptation in <i>Naganishia vishniacii</i> , a polyextremophile yeast isolated from Antarctica. FEMS Yeast Research, 2021, 21, .	1.1	14
260	Intraâ€species genetic variability drives carbon metabolism and symbiotic host interactions in the ectomycorrhizal fungus <i>Pisolithus microcarpus</i> . Environmental Microbiology, 2021, 23, 2004-2020.	1.8	14
261	Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milkâ€cap (<i>Lactarius</i>) mushrooms. New Phytologist, 2022, 235, 306-319.	3.5	14
262	The role of zinc in the adaptive evolution of polar phytoplankton. Nature Ecology and Evolution, 2022, 6, 965-978.	3.4	14
263	<i>Talaromyces borbonicus</i> , sp. nov., a novel fungus from biodegraded <i>Arundo donax</i> with potential abilities in lignocellulose conversion. Mycologia, 2018, 110, 316-324.	0.8	13
264	Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. Biotechnology for Biofuels, 2019, 12, 229.	6.2	12
265	Defining the eco-enzymological role of the fungal strain <i>Coniochaeta</i> sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
266	Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environmental Microbiology, 2021, 23, 99-109.	1.8	12
267	Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom. Scientific Reports, 2021, 11, 15592.	1.6	12
268	Cocultivation of Anaerobic Fungi with Rumen Bacteria Establishes an Antagonistic Relationship. MBio, 2021, 12, e0144221.	1.8	12
269	Abscisic acid supports colonization of <i>Eucalyptus grandis</i> roots by the mutualistic ectomycorrhizal fungus <i>Pisolithus microcarpus</i> . New Phytologist, 2022, 233, 966-982.	3.5	12
270	Kingdom-Wide Analysis of FungalÂProtein-Coding and tRNA Genes Reveals Conserved Patterns of Adaptive Evolution. Molecular Biology and Evolution, 2022, 39, .	3.5	12

#	Article	IF	CITATIONS
271	The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete. Fungal Biology, 2016, 120, 961-974.	1.1	11
272	The complete mitochondrial genome of the conifer needle endophyte, Phialocephala scopiformis DAOMC 229536 confirms evolutionary division within the fungal Phialocephala fortinii s.l.–ÂAcephala appalanata species complex. Fungal Biology, 2017, 121, 212-221.	1.1	11
273	Draft Genome Sequence of the Basidiomycete White-Rot Fungus Phlebia centrifuga. Genome Announcements, 2018, 6, .	0.8	11
274	Draft Genome Assemblies of Five Robust Yarrowia lipolytica Strains Exhibiting High Lipid Production, Pentose Sugar Utilization, and Sugar Alcohol Secretion from Undetoxified Lignocellulosic Biomass Hydrolysates. Microbiology Resource Announcements, 2018, 7, .	0.3	11
275	Enzymatic Adaptation of Podospora anserina to Different Plant Biomass Provides Leads to Optimized Commercial Enzyme Cocktails. Biotechnology Journal, 2019, 14, 1800185.	1.8	11
276	Draft Genome Assemblies of Ionic Liquid-Resistant Yarrowia lipolytica PO1f and Its Superior Evolved Strain, YICW001. Microbiology Resource Announcements, 2020, 9, .	0.3	11
277	Identification of a gene encoding the last step of the L-rhamnose catabolic pathway in Aspergillus niger revealed the inducer of the pathway regulator. Microbiological Research, 2020, 234, 126426.	2.5	11
278	Interhelical Contacts Determining the Architecture of Alpha-helical Globular Proteins. Journal of Biomolecular Structure and Dynamics, 1994, 12, 559-572.	2.0	10
279	Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola. Molecules, 2014, 19, 10717-10732.	1.7	10
280	Deletion of either the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass. Biotechnology for Biofuels, 2019, 12, 81.	6.2	10
281	Revisiting a â€~simple' fungal metabolic pathway reveals redundancy, complexity and diversity. Microbial Biotechnology, 2021, 14, 2525-2537.	2.0	10
282	Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 311.	1.5	10
283	The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom <i>Schizophyllum commune</i> . MBio, 2022, 13, .	1.8	10
284	Draft Genome Sequence of a Rare Smut Relative, <i>Tilletiaria anomala</i> UBC 951. Genome Announcements, 2014, 2, .	0.8	9
285	A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi (Basel, Switzerland), 2021, 7, 426.	1.5	9
286	Genomic Signatures of a Major Adaptive Event in the Pathogenic Fungus <i>Melampsora larici-populina</i> . Genome Biology and Evolution, 2022, 14, .	1.1	9
287	Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives. Genome Announcements, 2013, 1, .	0.8	8
288	Coniella lustricola, a new species from submerged detritus. Mycological Progress, 2018, 17, 191-203.	0.5	8

#	Article	IF	CITATIONS
289	Catabolic repression in early-diverging anaerobic fungi is partially mediated by natural antisense transcripts. Fungal Genetics and Biology, 2018, 121, 1-9.	0.9	8
290	An analysis of codon bias in six red yeast species. Yeast, 2019, 36, 53-64.	0.8	8
291	Mixtures of aromatic compounds induce ligninolytic gene expression in the wood-rotting fungus Dichomitus squalens. Journal of Biotechnology, 2020, 308, 35-39.	1.9	7
292	Draft Genome Sequences of the Black Truffles Tuber brumale Vittad. and Tuber indicum Cook & Massee. Microbiology Resource Announcements, 2021, 10, .	0.3	7
293	A single-cell genomics pipeline for environmental microbial eukaryotes. IScience, 2021, 24, 102290.	1.9	7
294	Detailed analysis of the D-galactose catabolic pathways in Aspergillus niger reveals complexity at both metabolic and regulatory level. Fungal Genetics and Biology, 2022, 159, 103670.	0.9	7
295	Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Communications Biology, 2022, 5, .	2.0	7
296	Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica. Journal of Fungi (Basel, Switzerland), 2021, 7, 854.	1.5	6
297	Sequence-based detection of distantly related proteins with the same fold. Protein Engineering, Design and Selection, 2001, 14, 455-458.	1.0	5
298	Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics, 2019, 20, 853.	1.2	5
299	Omics analyses and biochemical study of Phlebiopsis gigantea elucidate its degradation strategy of wood extractives. Scientific Reports, 2021, 11, 12528.	1.6	5
300	Cryptic genetic structure and copyâ€number variation in the ubiquitous forest symbiotic fungus <scp><i>Cenococcum geophilum</i></scp> . Environmental Microbiology, 2021, 23, 6536-6556.	1.8	5
301	Reverse transcriptase and intron number evolution. Stem Cell Investigation, 2014, 1, 17.	1.3	5
302	Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger. IScience, 2022, 25, 104065.	1.9	5
303	Simulated Annealing for Alpha-Helical Protein Folding: Searches in Vicinity of the "Molten Globule― State. Journal of Biomolecular Structure and Dynamics, 1998, 16, 115-122.	2.0	4
304	Target Selection for Structural Genomics: A Single Genome Approach. OMICS A Journal of Integrative Biology, 2002, 6, 349-362.	1.0	4
305	The homothallic mating-type locus of the conifer needle endophyte Phialocephala scopiformis DAOMC 229536 (order Helotiales). Fungal Biology, 2017, 121, 1011-1024.	1.1	4
306	Succession of physiological stages hallmarks the transcriptomic response of theÂfungus Aspergillus niger to lignocellulose. Biotechnology for Biofuels, 2020, 13, 69.	6.2	4

#	Article	IF	CITATIONS
307	Annotated Genome Sequence of the High-Biomass-Producing Yellow-Green Alga Tribonema minus. Microbiology Resource Announcements, 2021, 10, e0032721.	0.3	4
308	Proteomics for Validation of Automated Gene Model Predictions. Methods in Molecular Biology, 2009, 492, 447-452.	0.4	4
309	Fungal Genomics for Energy and Environment. Soil Biology, 2013, , 11-27.	0.6	4
310	Sequencing and Analysis of the Entire Genome of the Mycoparasitic Bioeffector Fungus Trichoderma asperelloides Strain T 203 (Hypocreales). Microbiology Resource Announcements, 2022, 11, e0099521.	0.3	4
311	GalR, GalX and AraR coâ€regulate <scp>d</scp> â€galactose and <scp>l</scp> â€arabinose utilization in <i>Aspergillus nidulans</i> . Microbial Biotechnology, 2022, 15, 1839-1851.	2.0	4
312	Draft Genome Sequence of the Ectomycorrhizal Ascomycete <i>Sphaerosporella brunnea</i> . Microbiology Resource Announcements, 2019, 8, .	0.3	3
313	Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Frontiers in Microbiology, 2021, 12, 680267.	1.5	3
314	Alternative splicing acting as a bridge in evolution. Stem Cell Investigation, 2015, 2, 19.	1.3	3
315	Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Molecular Ecology, 2022, 31, 1963-1979.	2.0	3
316	High-Quality Draft Nuclear and Mitochondrial Genome Sequence of <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Disease, 2022, 106, 1974-1976.	0.7	3
317	RNA-editing in Basidiomycota, revisited. ISME Communications, 2021, 1, .	1.7	2
318	Genomes to Proteomes. , 0, , 21-45.		1
319	A Genomic Catalog of Stress Response Genes in Anaerobic Fungi for Applications in Bioproduction. Frontiers in Fungal Biology, 2021, 2, .	0.9	1
320	Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens IST 626. Journal of Fungi (Basel, Switzerland), 2022, 8, 254.	1.5	1
321	Computational structural genomics. , 2001, , .		0
322	Introduction: Overview of Fungal Genomics. Methods in Molecular Biology, 2018, 1775, 1-7.	0.4	0
323	Genome Portal, Joint Genome Institute. , 2013, , 1-10.		0

#	Article	IF	CITATIONS
325	Draft genome sequences of strains CBS6241 and CBS6242 of the basidiomycetous yeast <i>Filobasidium floriforme</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0
326	Enemy or ally: a genomic approach to elucidate the lifestyle of <i>Phyllosticta citrichinaensis</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0
327	Near-Complete Genome Sequence of Zygosaccharomyces rouxii NRRL Y-64007, a Yeast Capable of Growing on Lignocellulosic Hydrolysates. Microbiology Resource Announcements, 2022, , e0005022.	0.3	0