

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3897389/publications.pdf Version: 2024-02-01

LIAN LI

#	Article	IF	CITATIONS
1	Highly effective binding of neutral dinitriles by simple pillar[5]arenes. Chemical Communications, 2012, 48, 2967.	4.1	301
2	Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chemical Communications, 2010, 46, 9016.	4.1	273
3	Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Organic and Biomolecular Chemistry, 2010, 8, 1568.	2.8	265
4	Biphen[n]arenes. Chemical Science, 2015, 6, 197-202.	7.4	208
5	Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene. Chemical Communications, 2013, 49, 1924.	4.1	197
6	A pH responsive complexation-based drug delivery system for oxaliplatin. Chemical Science, 2017, 8, 4458-4464.	7.4	182
7	Novel neutral guest recognition and interpenetrated complex formation from pillar[5]arenes. Chemical Communications, 2011, 47, 11294.	4.1	162
8	Terphen[<i>n</i>]arenes and Quaterphen[<i>n</i>]arenes (<i>n</i> =3–6): Oneâ€Pot Synthesis, Selfâ€Assembly into Supramolecular Gels, and Iodine Capture. Angewandte Chemie - International Edition, 2019, 58, 3885-3889.	13.8	156
9	Supramolecular Polymers Based on Efficient Pillar[5]arene—Neutral Guest Motifs. Chemistry - A European Journal, 2013, 19, 11892-11897.	3.3	153
10	Synthesis of Pillar[5]arene Dimers and Their Cooperative Binding toward Some Neutral Guests. Organic Letters, 2012, 14, 42-45.	4.6	152
11	Pillar[5]arene–neutral guest recognition based supramolecular alternating copolymer containing [c2]daisy chain and bis-pillar[5]arene units. Polymer Chemistry, 2013, 4, 3998.	3.9	132
12	Complexation of neutral 1,4-dihalobutanes with simple pillar[5]arenes that is dominated by dispersion forces. Organic and Biomolecular Chemistry, 2012, 10, 3393.	2.8	131
13	Efficient Separation of <i>cis</i> ―and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie - International Edition, 2019, 58, 10281-10284.	13.8	115
14	The marriage of endo-cavity and exo-wall complexation provides a facile strategy for supramolecular polymerization. Chemical Communications, 2015, 51, 3434-3437.	4.1	82
15	A Neutral Supramolecular Hyperbranched Polymer Fabricated from an AB ₂ â€₹ype Copillar[5]arene. Macromolecular Rapid Communications, 2013, 34, 1856-1862.	3.9	74
16	Syntheses of Spirocyclic Oxindoleâ€Butenolides by Using Three omponent Cycloadditions of Isocyanides, Allenoates, and Isatins. Chemistry - A European Journal, 2011, 17, 7409-7413.	3.3	67
17	Indium(III) Chloride-Catalyzed Isocyanide Insertion Reaction to Construct Complex Spirooxindole. Organic Letters, 2015, 17, 4874-4877.	4.6	67
18	Construction of Naphtho-Fused Oxindoles <i>via</i> the Aryne Diels–Alder Reaction with Methyleneindolinones. Organic Letters, 2012, 14, 4994-4997.	4.6	64

Jian Li

#	Article	IF	CITATIONS
19	Multicomponent Cascade Cycloaddition Involving Tropone, Allenoate, and Isocyanide: A Rapid Access to a 7,6,5-Fused Tricyclic Skeleton. Organic Letters, 2014, 16, 5604-5607.	4.6	60
20	Multicomponent Reaction to Construct Spirocyclic Oxindoles with a Michael (Triple) Tj ETQq0 0 0 rgBT /Overlock 9645-9650.	α 10 Tf 50 3.3	707 Td (Mich 56
21	Synthesis of a Water-Soluble Carboxylatobiphen[4]arene and Its Selective Complexation toward Acetylcholine. Organic Letters, 2016, 18, 5740-5743.	4.6	56
22	Temperature-Dependent Double Isocyanide Insertion Reaction To Construct a Polycyclic Skeleton. Organic Letters, 2016, 18, 840-843.	4.6	51
23	Isocyanideâ€Based Multicomponent Reactions: Concise Synthesis of Spirocyclic Oxindoles with Molecular Complexity by Using a [1,5]â€Hydrogen Shift as the Key Step. Chemistry - A European Journal, 2014, 20, 5905-5909.	3.3	50
24	Bu ₄ NI-Catalyzed α-Oxyacylation of Carbonyl Compounds with Toluene Derivatives. Organic Letters, 2016, 18, 1916-1919.	4.6	50
25	Iron-Catalyzed Aerobic Oxidation and Annulation Reaction of Pyridine and α-Substituted Allenoate toward Functionalized Indolizine. Organic Letters, 2018, 20, 413-416.	4.6	50
26	Binding Mechanisms and Driving Forces for the Selective Complexation between Pillar[5]arenes and Neutral Nitrogen Heterocyclic Compounds. European Journal of Organic Chemistry, 2013, 2013, 2057-2060.	2.4	45
27	Molecular binding behavior of bipyridium derivatives by water-soluble carboxylato-biphen[3]arene. Chemical Communications, 2015, 51, 6621-6624.	4.1	45
28	Terphen[<i>n</i>]arenes and Quaterphen[<i>n</i>]arenes (<i>n</i> =3–6): Oneâ€Pot Synthesis, Selfâ€Assembly into Supramolecular Gels, and Iodine Capture. Angewandte Chemie, 2019, 131, 3925-3929.	2.0	43
29	Silver Hexafluoroantimonateâ€Catalyzed Threeâ€Component [2+2+1] Cycloadditions of Allenoates, Dual Activated Olefins, and Isocyanides. Advanced Synthesis and Catalysis, 2011, 353, 913-917.	4.3	41
30	Efficient Separation of <i>cis</i> ―and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie, 2019, 131, 10387-10390.	2.0	38
31	Unexpected isocyanide-based cascade cycloaddition reaction with methyleneindolinone. Chemical Communications, 2013, 49, 10694.	4.1	36
32	Isocyanide-Based Multicomponent Bicyclization with Substituted Allenoate and Isatin: Synthesis of Unusual Spirooxindole Containing [5.5]-Fused Heterocycle. Journal of Organic Chemistry, 2016, 81, 9158-9166.	3.2	36
33	Ytterbium and silver co-catalyzed synthesis of pyrrole-fused bicyclic skeletons from enynones and isocyanides. Chemical Communications, 2018, 54, 6412-6415.	4.1	36
34	Exploiting the Reactivity of Isocyanide: Coupling Reaction between Isocyanide and Toluene Derivatives Using the Isocyano Group as an N1 Synthon. Organic Letters, 2016, 18, 4052-4055.	4.6	34
35	2,2′-Biphen[n]arenes (n = 4–8): one-step, high-yield synthesis, and host–guest properties. Chemical Communications, 2017, 53, 12096-12099.	4.1	33
36	Palladium-catalyzed cascade reactions of enynones and isocyanides: access towards functionalized ketenimine and its application. Chemical Communications, 2020, 56, 4555-4558.	4.1	29

Jian Li

#	Article	IF	CITATIONS
37	Ugi/Himbert Arene/Allene Diels–Alder Cycloaddition to Synthesize Strained Polycyclic Skeleton. Journal of Organic Chemistry, 2015, 80, 11100-11107.	3.2	26
38	Construction of [2]rotaxane-based supramolecular polymers driven by wheel-stopper Ï€â<'Ï€ interactions. Chemical Communications, 2018, 54, 11634-11637.	4.1	25
39	A domino reaction of 2-isocyanophenyloxyacrylate and aryne to synthesize arenes with vicinal olefin and benzoxazole. Chemical Communications, 2018, 54, 9611-9614.	4.1	24
40	Design, Synthesis, and Biological Evaluation of Novel EGFR PROTACs Targeting Del19/T790M/C797S Mutation. ACS Medicinal Chemistry Letters, 2022, 13, 278-283.	2.8	23
41	A bicyclization reaction with two molecular allenyl ketones and isocyanides: synthesis of a lactone-containing azaspirocycle derivative. Chemical Communications, 2019, 55, 7231-7234.	4.1	19
42	A formal (5+1) annulation reaction from heterodimerization of two different isocyanides: stereoselective synthesis of 2 <i>H</i> -benzo[<i>b</i>][1,4]oxazin-2-one. Chemical Communications, 2019, 55, 12243-12246.	4.1	19
43	Molecular Recognition Properties of Biphen[4]arene. Chemistry - an Asian Journal, 2016, 11, 3449-3453.	3.3	16
44	Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access a furan-fused eight-membered ring and a spirocycle. Chemical Communications, 2019, 55, 12180-12183.	4.1	15
45	Diastereoselective Synthesis of Tetracyclic Tetrahydroquinoline Derivative Enabled by Multicomponent Reaction of Isocyanide, Allenoate, and 2-Aminochalcone. Organic Letters, 2021, 23, 4094-4098.	4.6	15
46	Isocyanide-Based Multicomponent Reactions: Rapid Synthesis of a 5,5-Fused Bicyclic Skeleton from α,β-Unsaturated Ketones and Allenoates. Synthesis, 2015, 47, 2414-2430.	2.3	14
47	Phosphineâ€Catalyzed Domino Reaction of α,βâ€Unsaturated Ketone and Allenoate: Stereoselective Synthesis of Polysubstituted Dihydroâ€≺i>2Hâ€Pyran. Advanced Synthesis and Catalysis, 2018, 360, 2333-2338.	4.3	13
48	Cascade cyclization and acyl migration of propargylic esters with isocyanides: rapid access to substituted furans. Chemical Communications, 2019, 55, 8394-8397.	4.1	13
49	Exploring the Reactivity of Propargylic Ester: Acyloxy and Acyl Migratory Rearrangement Relay Enabled by Formal Double Isocyanide Insertion. Advanced Synthesis and Catalysis, 2021, 363, 2536-2540.	4.3	13
50	Selective Oxidative Coupling Reaction of Isocyanides Using Peroxide as Switchable Alkylating and Alkoxylating Reagent. Advanced Synthesis and Catalysis, 2018, 360, 272-277.	4.3	12
51	Cascade Reaction of <i>o</i> â€Haloaryl Ynone and 2â€Hydroxyâ€2â€Methylchromene: Synthesis of Chromone Derivative Enabled by Oxygenâ€Migration. Advanced Synthesis and Catalysis, 2022, 364, 291-295.	4.3	7
52	Iron atalyzed Oxidative Coupling Reaction of Isocyanides and Simple Alkanes towards Amide Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2009-2013.	4.3	6
53	Sequential cycloaddition and ring expansion reaction of arynes and methylenebenzothiopheneones: synthesis of a benzo-fused eight-membered ring <i>via</i> sulfonium ylides. RSC Advances, 2019, 9, 39119-39123.	3.6	6
54	A multicomponent bicyclization reaction of isocyanide, allenoate, imine and water to synthesize pyrrolidine-fused rings. RSC Advances, 2017, 7, 32300-32303.	3.6	5

Jian Li

#	Article	IF	CITATIONS
55	Carbon–nitrogen bond cleavage of pyridine with two molecular substituted allenoates: access to 2-arylpyrimidin-4(3 <i>H</i>)-one. Chemical Communications, 2018, 54, 14128-14131.	4.1	4
56	Isocyanideâ€Based Multicomponent Reaction To Furnish Nâ€Functionalized Indoles by using <i>N</i> â€Acyliminium Ions as Key Intermediates. European Journal of Organic Chemistry, 2017, 2017, 4507-4510.	2.4	3
57	Diastereoselective Synthesis of oxa â€Bridged Tetracyclic Benzooxazines from the Reaction of 2â€Isocyanophenyloxyacrylates and Propargylic Esters. Advanced Synthesis and Catalysis, 2021, 363, 3957-3961.	4.3	3
58	Direct C3-H carbamoylation of quinoxalin-2(1H)-ones with isocyanides enabled by selectfluor II under mild conditions. Tetrahedron Letters, 2021, 88, 153511.	1.4	3
59	Multiple Stimuli-Responsive Conformational Exchanges of Biphen[3]arene Macrocycle. Molecules, 2020, 25, 5780.	3.8	0