Guanghong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	47.7	406
2	Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chemical Reviews, 2016, 116, 6516-6551.	47.7	302
3	Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes. ACS Nano, 2012, 6, 3907-3918.	14.6	264
4	Plugging into Proteins: Poisoning Protein Function by a Hydrophobic Nanoparticle. ACS Nano, 2010, 4, 7508-7514.	14.6	168
5	Carbon Nanotube Inhibits the Formation of β-Sheet-Rich Oligomers of the Alzheimer's Amyloid-β(16-22) Peptide. Biophysical Journal, 2011, 101, 2267-2276.	0.5	168
6	Effects of Solvent on the Structure of the Alzheimer Amyloid-β(25–35) Peptide. Biophysical Journal, 2006, 91, 1638-1647.	0.5	161
7	The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment. Nanoscale, 2014, 6, 9752-9762.	5.6	135
8	Pathway Complexity of Alzheimer's β-Amyloid Aβ16-22 Peptide Assembly. Structure, 2004, 12, 1245-1255.	3.3	132
9	Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proceedings of the United States of America, 2015, 112, 2996-3001.	7.1	123
10	Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins: Structure, Function and Bioinformatics, 2009, 75, 954-963.	2.6	114
11	Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Nanoscale, 2014, 6, 2800.	5.6	100
12	Complex folding pathways in a simple β-hairpin. Proteins: Structure, Function and Bioinformatics, 2004, 56, 464-474.	2.6	84
13	Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms. ACS Nano, 2016, 10, 8316-8324.	14.6	84
14	Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study. ACS Chemical Neuroscience, 2019, 10, 1585-1594.	3.5	83
15	Induced β-Barrel Formation of the Alzheimer's Aβ25–35 Oligomers on Carbon Nanotube Surfaces: Implication for Amyloid Fibril Inhibition. Biophysical Journal, 2009, 97, 1795-1803.	0.5	82
16	Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Physical Chemistry Chemical Physics, 2010, 12, 3622.	2.8	82
17	Atomic-Level Study of Adsorption, Conformational Change, and Dimerization of an α-Helical Peptide at Graphene Surface. Journal of Physical Chemistry B, 2011, 115, 9813-9822.	2.6	81
18	Structural Insight into Tau Protein's Paradox of Intrinsically Disordered Behavior, Self-Acetylation Activity, and Aggregation. Journal of Physical Chemistry Letters, 2014, 5, 3026-3031.	4.6	81

#	Article	IF	CITATIONS
19	Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Scientific Reports, 2016, 6, 33076.	3.3	79
20	Self-Assembly of the β2-Microglobulin NHVTLSQ Peptide Using a Coarse-Grained Protein Model Reveals a β-Barrel Species. Journal of Physical Chemistry B, 2008, 112, 4410-4418.	2.6	75
21	Sampling the Self-Assembly Pathways of KFFE Hexamers. Biophysical Journal, 2004, 87, 3648-3656.	0.5	74
22	Unusual Twoâ€Step Assembly of a Minimalistic Dipeptideâ€Based Functional Hypergelator. Advanced Materials, 2020, 32, e1906043.	21.0	73
23	Nanoengineered Peptideâ€Based Antimicrobial Conductive Supramolecular Biomaterial for Cardiac Tissue Engineering. Advanced Materials, 2021, 33, e2008715.	21.0	73
24	Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ ₄₂ Protofibril. ACS Chemical Neuroscience, 2020, 11, 1841-1851.	3.5	73
25	Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano, 2018, 12, 3253-3262.	14.6	72
26	Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example. Methods in Molecular Biology, 2018, 1777, 101-119.	0.9	70
27	Conformational Distribution and α-Helix to β-Sheet Transition of Human Amylin Fragment Dimer. Biomacromolecules, 2014, 15, 122-131.	5.4	69
28	Structure and Thermodynamics of Amylin Dimer Studied by Hamiltonian-Temperature Replica Exchange Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 3146-3154.	2.6	67
29	The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Physical Chemistry Chemical Physics, 2016, 18, 12582-12591.	2.8	67
30	Effect of the Disulfide Bond on the Monomeric Structure of Human Amylin Studied by Combined Hamiltonian and Temperature Replica Exchange Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114, 7071-7077.	2.6	64
31	Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau. Journal of the American Chemical Society, 2012, 134, 10271-10278.	13.7	63
32	Cross-seeding and Conformational Selection between Three- and Four-repeat Human Tau Proteins. Journal of Biological Chemistry, 2012, 287, 14950-14959.	3.4	63
33	Computational Simulations of the Early Steps of Protein Aggregation. Prion, 2007, 1, 3-8.	1.8	62
34	Sampling the complex energy landscape of a simple β-hairpin. Journal of Chemical Physics, 2003, 119, 6403-6406.	3.0	59
35	Expanding the Functional Scope of the Fmocâ€Diphenylalanine Hydrogelator by Introducing a Rigidifying and Chemically Active Urea Backbone Modification. Advanced Science, 2019, 6, 1900218.	11.2	57
36	Hydrophobic Interaction Drives Surface-Assisted Epitaxial Assembly of Amyloid-like Peptides. Journal of the American Chemical Society, 2013, 135, 3150-3157.	13.7	56

#	Article	IF	CITATIONS
37	Influence of Au nanoparticles on the aggregation of amyloid-β-(25–35) peptides. Nanoscale, 2013, 5, 10397.	5.6	54
38	Probing ion channel activity of human islet amyloid polypeptide (amylin). Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3121-3130.	2.6	50
39	Sequence Effects on Peptide Assembly Characteristics Observed by Using Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2013, 135, 2181-2187.	13.7	50
40	Interactions of a Water-Soluble Fullerene Derivative with Amyloid-β Protofibrils: Dynamics, Binding Mechanism, and the Resulting Salt-Bridge Disruption. Journal of Physical Chemistry B, 2014, 118, 6733-6741.	2.6	50
41	Interactions of Aβ25â^'35 β-Barrel-like Oligomers with Anionic Lipid Bilayer and Resulting Membrane Leakage: An All-Atom Molecular Dynamics Study. Journal of Physical Chemistry B, 2011, 115, 1165-1174.	2.6	49
42	The Inhibitory Effect of Hydroxylated Carbon Nanotubes on the Aggregation of Human Islet Amyloid Polypeptide Revealed by a Combined Computational and Experimental Study. ACS Chemical Neuroscience, 2018, 9, 2741-2752.	3.5	49
43	Exploring the energy landscape of proteins: A characterization of the activation-relaxation technique. Journal of Chemical Physics, 2002, 117, 11379-11387.	3.0	48
44	Molecular dynamics simulations reveal the mechanism of graphene oxide nanosheet inhibition of Aβ _{1–42} peptide aggregation. Physical Chemistry Chemical Physics, 2019, 21, 10981-10991.	2.8	48
45	Synergistic Inhibitory Effect of Peptide–Organic Coassemblies on Amyloid Aggregation. ACS Nano, 2016, 10, 4143-4153.	14.6	47
46	Liquid–Liquid Phase Separation of Tau Protein Is Encoded at the Monomeric Level. Journal of Physical Chemistry Letters, 2021, 12, 2576-2586.	4.6	47
47	Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. Journal of the American Chemical Society, 2021, 143, 17633-17645.	13.7	47
48	Phase transition of nanotube-confined water driven by electric field. Journal of Chemical Physics, 2011, 134, 154507.	3.0	46
49	Molecular Dynamics Simulations Reveal the Inhibitory Mechanism of Dopamine against Human Islet Amyloid Polypeptide (hIAPP) Aggregation and Its Destabilization Effect on hIAPP Protofibrils. ACS Chemical Neuroscience, 2019, 10, 4151-4159.	3.5	46
50	Structural diversity of the soluble trimers of the human amylin(20–29) peptide revealed by molecular dynamics simulations. Journal of Chemical Physics, 2009, 130, 125101.	3.0	44
51	Aβ(16–22) Peptides Can Assemble into Ordered β-Barrels and Bilayer β-Sheets, while Substitution of Phenylalanine 19 by Tryptophan Increases the Population of Disordered Aggregates. Journal of Physical Chemistry B, 2013, 117, 10149-10160.	2.6	44
52	Lattice dynamics of zinc-blende GaN and AlN: I. Bulk phonons. Journal of Physics Condensed Matter, 1996, 8, 6323-6328.	1.8	42
53	Effects of Hydroxylated Carbon Nanotubes on the Aggregation of A β 16–22 Peptides: A Combined Simulation and Experimental Study. Biophysical Journal, 2014, 107, 1930-1938.	0.5	42
54	Aβ "Stretching-and-Packing―Cross-Seeding Mechanism Can Trigger Tau Protein Aggregation. Journal of Physical Chemistry Letters, 2015, 6, 3276-3282.	4.6	42

#	Article	IF	CITATIONS
55	Self-assembly of amyloid-forming peptides by molecular dynamics simulations. Frontiers in Bioscience - Landmark, 2008, Volume, 5681.	3.0	41
56	Atomic-Level Study of the Effects of O4 Molecules on the Structural Properties of Protofibrillar Aβ Trimer: β-Sheet Stabilization, Salt Bridge Protection, and Binding Mechanism. Journal of Physical Chemistry B, 2015, 119, 2786-2794.	2.6	40
57	Amphiphilic Peptides A ₆ K and V ₆ K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study. Biomacromolecules, 2015, 16, 2940-2949.	5.4	39
58	Lipid Interaction and Membrane Perturbation of Human Islet Amyloid Polypeptide Monomer and Dimer by Molecular Dynamics Simulations. PLoS ONE, 2012, 7, e38191.	2.5	39
59	Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angewandte Chemie - International Edition, 2014, 53, 1590-1593.	13.8	38
60	Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. Journal of Biological Chemistry, 2018, 293, 17336-17348.	3.4	35
61	The distinct structural preferences of tau protein repeat domains. Chemical Communications, 2018, 54, 5700-5703.	4.1	35
62	Molecular insights into the reversible formation of tau protein fibrils. Chemical Communications, 2013, 49, 3582.	4.1	34
63	Recent computational studies of membrane interaction and disruption of human islet amyloid polypeptide: Monomers, oligomers and protofibrils. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1826-1839.	2.6	34
64	Atomistic-level study of the interactions between hIAPP protofibrils and membranes: Influence of pH and lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1818-1825.	2.6	33
65	Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects. Physical Chemistry Chemical Physics, 2019, 21, 4022-4031.	2.8	33
66	Prediction and characterization of liquid-liquid phase separation of minimalistic peptides. Cell Reports Physical Science, 2021, 2, 100579.	5.6	33
67	Transformation of an oblate-shaped vesicle induced by an adhering spherical particle. Physical Review E, 2011, 84, 050901.	2.1	32
68	Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation. International Journal of Molecular Sciences, 2013, 14, 6241-6258.	4.1	32
69	Binding of protofibrillar Al² trimers to lipid bilayer surface enhances Al² structural stability and causes membrane thinning. Physical Chemistry Chemical Physics, 2017, 19, 27556-27569.	2.8	32
70	Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity. Physical Chemistry Chemical Physics, 2018, 20, 17208-17217.	2.8	32
71	Effects of G33A and G33I Mutations on the Structures of Monomer and Dimer of the Amyloid-β Fragment 29â^'42 by Replica Exchange Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 1282-1288.	2.6	31
72	Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment. Nanoscale, 2018, 10, 8989-8997.	5.6	31

#	Article	IF	CITATIONS
73	Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ ₄₂ aggregation and disruption of Aβ ₄₂ protofibril: similarities and differences. Physical Chemistry Chemical Physics, 2021, 23, 18843-18854.	2.8	31
74	Highly Efficient Destruction of Amyloid-Î ² Fibrils by Femtosecond Laser-Induced Nanoexplosion of Gold Nanorods. ACS Chemical Neuroscience, 2016, 7, 1728-1736.	3.5	30
75	Single-molecule visualization of dynamic transitions of pore-forming peptides among multiple transmembrane positions. Nature Communications, 2016, 7, 12906.	12.8	30
76	Orcein-Related Small Molecule O4 Destabilizes hIAPP Protofibrils by Interacting Mostly with the Amyloidogenic Core Region. Journal of Physical Chemistry B, 2017, 121, 9203-9212.	2.6	30
77	A Comprehensive Insight into the Mechanisms of Dopamine in Disrupting AÎ ² Protofibrils and Inhibiting AÎ ² Aggregation. ACS Chemical Neuroscience, 2021, 12, 4007-4019.	3.5	28
78	Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study. Physical Review E, 2011, 84, 051922.	2.1	27
79	Investigation of the Aggregation Process of Amyloid-β-(16-22) Peptides and the Dissolution of Intermediate Aggregates. Langmuir, 2014, 30, 3170-3175.	3.5	27
80	Zone-center optical phonons in wurtzite GaN and AlN. Journal of Applied Physics, 1997, 82, 4693-4695.	2.5	26
81	Influence of electric fields on the structure and structure transition of water confined in a carbon nanotube. Journal of Chemical Physics, 2014, 140, 154508.	3.0	26
82	Distinct Helix Propensities and Membrane Interactions of Human and Rat IAPP _{1–19} Monomers in Anionic Lipid Bilayers. Journal of Physical Chemistry B, 2015, 119, 3366-3376.	2.6	26
83	Pristine and Hydroxylated Fullerenes Prevent the Aggregation of Human Islet Amyloid Polypeptide and Display Different Inhibitory Mechanisms. Frontiers in Chemistry, 2020, 8, 51.	3.6	26
84	Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46–K80 Salt-Bridge and Inter-protofibril Interface. ACS Chemical Neuroscience, 2020, 11, 4351-4361.	3.5	25
85	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie - International Edition, 2020, 59, 23731-23739.	13.8	25
86	Interaction Dynamics in Inhibiting the Aggregation of AÎ ² Peptides by SWCNTs: A Combined Experimental and Coarse-Grained Molecular Dynamic Simulation Study. ACS Chemical Neuroscience, 2016, 7, 1232-1240.	3.5	24
87	Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.	12.8	24
88	Serotonin and Melatonin Show Different Modes of Action on Aβ ₄₂ Protofibril Destabilization. ACS Chemical Neuroscience, 2021, 12, 799-809.	3.5	24
89	Natural stereoisomeric flavonoids exhibit different disruptive effects and the mechanism of action on Al² ₄₂ protofibril. Chemical Communications, 2021, 57, 4267-4270.	4.1	24
90	Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant. Physical Chemistry Chemical Physics, 2016, 18, 8098-8107.	2.8	23

#	Article	IF	CITATIONS
91	Mechanistic Insights into the Co-Aggregation of Al̂ ² and hIAPP: An All-Atom Molecular Dynamic Study. Journal of Physical Chemistry B, 2021, 125, 2050-2060.	2.6	23
92	Conformational stability and dynamics of the cancerâ€associated isoform Δ133p53β are modulated by p53 peptides and p53â€specific DNA. FASEB Journal, 2019, 33, 4225-4235.	0.5	22
93	Critical nucleus of Greek-key-like core of α-synuclein protofibril and its disruption by dopamine and norepinephrine. Physical Chemistry Chemical Physics, 2020, 22, 203-211.	2.8	22
94	Structural, thermodynamical, and dynamical properties of oligomers formed by the amyloid NNQQ peptide: Insights from coarse-grained simulations. Journal of Chemical Physics, 2012, 137, 025101.	3.0	21
95	Gate-Controlled Sum-Frequency Vibrational Spectroscopy for Probing Charged Oxide/Water Interfaces. Journal of Physical Chemistry Letters, 2019, 10, 5943-5948.	4.6	21
96	Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Physical Chemistry Chemical Physics, 2020, 22, 9225-9232.	2.8	21
97	Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9. Angewandte Chemie - International Edition, 2016, 55, 5703-5707.	13.8	20
98	Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances. ACS Nano, 2019, 13, 1703-1712.	14.6	19
99	Green tea extract EGCG plays a dual role in Aβ42 protofibril disruption and membrane protection: A molecular dynamic study. Chemistry and Physics of Lipids, 2021, 234, 105024.	3.2	19
100	Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization. Protein Engineering, Design and Selection, 2016, 29, 347-354.	2.1	18
101	Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ _{16â~'22} fibrils: an all-atom simulation study. Physical Chemistry Chemical Physics, 2019, 21, 15686-15694.	2.8	18
102	Bioinspired Supramolecular Packing Enables High Thermo‧ustainability. Angewandte Chemie - International Edition, 2020, 59, 19037-19041.	13.8	18
103	Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid–Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. Journal of Chemical Information and Modeling, 2022, 62, 3227-3238.	5.4	18
104	Structure and Aggregation Mechanism of β2-Microglobulin (83–99) Peptides Studied by Molecular Dynamics Simulations. Biophysical Journal, 2007, 93, 3353-3362.	0.5	17
105	Membrane Binding and Insertion of a pHLIP Peptide Studied by All-Atom Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2013, 14, 14532-14549.	4.1	16
106	Atomistic mechanisms of huntingtin Nâ€ŧerminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1409-1427.	2.6	16
107	Electric-Field-Induced Phase Transition of Confined Water Nanofilms between Two Graphene Sheets. Journal of Physical Chemistry A, 2014, 118, 8922-8928.	2.5	16
108	Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Physical Chemistry Chemical Physics, 2021, 23, 20406-20418.	2.8	16

#	Article	IF	CITATIONS
109	All-Atom Stability and Oligomerization Simulations of Polyglutamine Nanotubes with and without the 17-Amino-Acid N-Terminal Fragment of the Huntingtin Protein. Journal of Physical Chemistry B, 2012, 116, 12168-12179.	2.6	15
110	Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Physical Chemistry Chemical Physics, 2016, 18, 29892-29904.	2.8	15
111	Lattice dynamics of GaN/AIN superlattices. Journal of Applied Physics, 1997, 82, 622-627.	2.5	14
112	Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine. Nanoscale, 2020, 12, 3038-3049.	5.6	14
113	Investigation of the Dissociation Mechanism of Single-Walled Carbon Nanotube on Mature Amyloid-β Fibrils at Single Nanotube Level. Journal of Physical Chemistry B, 2020, 124, 3459-3468.	2.6	13
114	Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer's disease-related tau R3-R4 Protofilament by norepinephrine. Biophysical Chemistry, 2021, 271, 106541.	2.8	13
115	The β-Strand-Loop-β-Strand Conformation Is Marginally Populated in β2-Microglobulin (20–41) Peptide in Solution as Revealed by Replica Exchange Molecular Dynamics Simulations. Biophysical Journal, 2008, 95, 510-517.	0.5	12
116	Inhibitory effect of hydrophobic fullerenes on the Î ² -sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations. RSC Advances, 2017, 7, 13947-13956.	3.6	12
117	Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chemical Neuroscience, 2020, 11, 3233-3244.	3.5	12
118	Exploring the early steps of aggregation of amyloid-forming peptide KFFE. Journal of Physics Condensed Matter, 2004, 16, S5047-S5054.	1.8	11
119	Lattice dynamics of zinc-blende GaN and AlN: II. Superlattice phonons. Journal of Physics Condensed Matter, 1996, 8, 6329-6336.	1.8	10
120	Carbon nanotube prevents the secondary structure formation of amyloid-β trimers: an all-atom molecular dynamics study. Molecular Simulation, 2017, 43, 1189-1195.	2.0	10
121	Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.	5.6	10
122	Unraveling the Allosteric Mechanism of Four Cancer-related Mutations in the Disruption of p53-DNA Interaction. Journal of Physical Chemistry B, 2021, 125, 10138-10148.	2.6	10
123	Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. Journal of Diabetes Research, 2016, 2016, 1-13.	2.3	9
124	Formation of \hat{I}_{\pm} -helical and \hat{I}^2 -sheet structures in membrane-bound human IAPP monomer and the resulting membrane deformation. Physical Chemistry Chemical Physics, 2019, 21, 20239-20251.	2.8	9
125	Study on Molecular Cavity of Oligoamide Macrocycles by Using Scanning Tunneling Microscopy. ChemPhysChem, 2012, 13, 3598-3604.	2.1	7
126	Proline hydroxylation at different sites in hypoxia-inducible factor 1α modulates its interactions with the von Hippel–Lindau tumor suppressor protein. Physical Chemistry Chemical Physics, 2018, 20, 18756-18765.	2.8	7

#	Article	IF	CITATIONS
127	ALS-associated A315E and A315pT variants exhibit distinct mechanisms in inducing irreversible aggregation of TDP-43 _{312–317} peptides. Physical Chemistry Chemical Physics, 2022, 24, 16263-16273.	2.8	6
128	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie, 2020, 132, 23939-23947.	2.0	5
129	Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion. Chinese Physics B, 2020, 29, 108710.	1.4	5
130	Effects of the RCTFECKF Inhibitor on the Structures of the Transmembrane Fragment 70â´'86 of Glycophorin A: An All-Atom Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 1004-1009.	2.6	4
131	Deciphering the mechanisms of HPV E6 mutations in the destabilization of E6/E6AP/p53 complex. Biophysical Journal, 2022, 121, 1704-1714.	0.5	4
132	Dancing with Strings: The Conformational Dynamics of VQIXXK Motifs within Tau Protein in Monomer, Fibril and Hyper-Phosphorylated Filament States. Biophysical Journal, 2016, 110, 553a-554a.	0.5	3
133	Mechanistic insight into the destabilization of p53TD tetramer by cancer-related R337H mutation: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 5199-5210.	2.8	3
134	Editorial overview: Folding and binding: Old concepts, new ideas, novel insights. Current Opinion in Structural Biology, 2015, 30, iv-vi.	5.7	2
135	Bioinspired Supramolecular Packing Enables High Thermo‣ustainability. Angewandte Chemie, 2020, 132, 19199-19203.	2.0	2
136	Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9. Angewandte Chemie, 2016, 128, 5797-5801.	2.0	1
137	Exploring the Aggregation Mechanism of Intrinsically Disordered Tau Protein. World Scientific Lecture and Course Notes in Chemistry, 2017, , 51-71.	0.2	1
138	Multiscale Simulation of Polyglutamine and the Effect of Neighboring Amino Acids on Oligomerization. Biophysical Journal, 2012, 102, 733a.	0.5	0
139	STRUCTURAL INSIGHT INTO THE POLYMORPHISM OF NNQNTF PROTOFIBRIL: IMPORTANCE OF INTERFACIAL WATER, POLAR AND AROMATIC RESIDUES. Journal of Theoretical and Computational Chemistry, 2013, 12, 1341012.	1.8	0
140	Effects of Carbon Nanoparticles on the Aggregation of Alzheimers Beta-Amyloid Peptide. Biophysical Journal, 2015, 108, 66a-67a.	0.5	0
141	Self-Assembling ABETA(30-36) Peptides: A Combined All-Atom and Coarse-Grained Simulation Study. Biophysical Journal, 2018, 114, 229a.	0.5	0