
Mary A Yui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3897233/publications.pdf Version: 2024-02-01

Μαργ Δ Υιμ

#	Article	IF	CITATIONS
1	Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 2008, 8, 9-21.	10.6	394
2	Speed congenics: a classic technique in the fast lane (relatively speaking). Trends in Immunology, 1997, 18, 472-477.	7.5	301
3	Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus. Immunity, 2006, 24, 53-64.	6.6	278
4	Developmental gene networks: a triathlon on the course to T cell identity. Nature Reviews Immunology, 2014, 14, 529-545.	10.6	276
5	MHC class II, antigen presentation and tumor necrosis factor in renal tubular epithelial cells. Kidney International, 1990, 37, 783-792.	2.6	227
6	Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature Immunology, 2007, 8, 845-855.	7.0	175
7	Fine-Scale Staging of T Cell Lineage Commitment in Adult Mouse Thymus. Journal of Immunology, 2010, 185, 284-293.	0.4	132
8	Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nature Immunology, 2016, 17, 956-965.	7.0	119
9	Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11993-11998.	3.3	100
10	A gene regulatory network armature for T lymphocyte specification. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20100-20105.	3.3	87
11	Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16. Nature Immunology, 2018, 19, 1427-1440.	7.0	83
12	Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development. Cell Systems, 2019, 9, 321-337.e9.	2.9	80
13	A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. ELife, 2018, 7, .	2.8	70
14	A New Regulatory Region of the IL-2 Locus That Confers Position-Independent Transgene Expression. Journal of Immunology, 2001, 166, 1730-1739.	0.4	69
15	Preferential Activation of an IL-2 Regulatory Sequence Transgene in TCRγÎ′ and NKT Cells: Subset-Specific Differences in IL-2 Regulation. Journal of Immunology, 2004, 172, 4691-4699.	0.4	69
16	Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Developmental Biology, 2009, 325, 444-467.	0.9	63
17	Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunological Reviews, 2006, 209, 212-236.	2.8	62
18	Genetic dissection of lupus nephritis in murine models of SLE. Journal of Clinical Immunology, 1997, 17, 272-281.	2.0	61

Mary A Yui

#	Article	IF	CITATIONS
19	Echinostoma paraensei: Hemocytes of Biomphalaria glabrata as targets of echinostome mediated interference with host snail resistance to Schistosoma mansoni. Experimental Parasitology, 1986, 62, 149-154.	0.5	56
20	ECHINODERM IMMUNOLOGY: BACTERIAL CLEARANCE BY THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS. Biological Bulletin, 1983, 165, 473-486.	0.7	53
21	Multiclass Weighted Loss for Instance Segmentation of Cluttered Cells. , 2018, , .		47
22	Polyclonal activation of salmonid B lymphocytes. Developmental and Comparative Immunology, 1987, 11, 155-165.	1.0	37
23	Interactions between the plasma proteins of <i>Biomphalaria glabrata</i> (Gastropoda) and the sporocyst tegument of <i>Schistosoma mansoni</i> (Trematoda). Parasitology, 1986, 92, 653-664.	0.7	35
24	Hematopoiesis and Tâ€cell specification as a model developmental system. Immunological Reviews, 2016, 271, 72-97.	2.8	35
25	Vibrioanguillarum antigen stimulates mitogenesis and polyclonal activation of salmonid lymphocytes. Developmental and Comparative Immunology, 1987, 11, 539-549.	1.0	30
26	Deranged Early T Cell Development in Immunodeficient Strains of Nonobese Diabetic Mice. Journal of Immunology, 2004, 173, 5381-5391.	0.4	29
27	Schistosoma mansoni: Agglutination of sporocysts, and formation of gels on miracidia transforming in plasma of Biomphalaria glabrata. Experimental Parasitology, 1984, 58, 56-62.	0.5	27
28	Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia, 2020, 34, 1241-1252.	3.3	27
29	Widespread antigenic cross-reactivity between plasma proteins of a gastropod, and its trematode parasite. Developmental and Comparative Immunology, 1987, 11, 321-329.	1.0	19
30	Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes, 2016, 65, 2367-2379.	0.3	19
31	Plasma components which mediate cellular defences in the gastropod mollusc Biomphalaria glabrata. Developmental and Comparative Immunology, 1985, 9, 523-530.	1.0	14
32	Transcriptional Establishment of Cell-Type Identity: Dynamics and Causal Mechanisms of T-Cell Lineage Commitment. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 31-41.	2.0	14
33	The cascading, interrelated roles of interleukin-1, interleukin-2, and interleukin-6 in murine anti-CD3-driven T cell proliferation. Clinical Immunology and Immunopathology, 1990, 55, 67-85.	2.1	11
34	Lineage Divergence at the First TCR-Dependent Checkpoint: Preferential γδ and Impaired αβ T Cell Development in Nonobese Diabetic Mice. Journal of Immunology, 2011, 186, 826-837.	0.4	11
35	Multi-scale Dynamical Modeling of T Cell Development from an Early Thymic Progenitor State to Lineage Commitment. Cell Reports, 2021, 34, 108622.	2.9	9
36	Loss of T Cell Progenitor Checkpoint Control Underlies Leukemia Initiation in Rag1-Deficient Nonobese Diabetic Mice. Journal of Immunology, 2013, 190, 3276-3288.	0.4	5

#	Article	IF	CITATIONS
37	Mouse chromosome 3. Mammalian Genome, 1997, 7, S45-S59.	1.0	4