Philseok Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389697/publications.pdf Version: 2024-02-01

PHILSEOK KIM

#	Article	IF	CITATIONS
1	Selfâ€&tratifying Porous Silicones with Enhanced Liquid Infusion and Protective Skin Layer for Biofouling Prevention. Advanced Materials Interfaces, 2021, 8, 2000359.	1.9	12
2	Laboratory and Field Testing Assessment of Next Generation Biocide-Free, Fouling-Resistant Slippery Coatings. ACS Applied Polymer Materials, 2020, 2, 5147-5162.	2.0	14
3	Dynamic Self-Repairing Hybrid Liquid-in-Solid Protective Barrier for Cementitious Materials. ACS Applied Materials & Interfaces, 2020, 12, 31922-31932.	4.0	6
4	Harnessing structural instability and material instability in the hydrogel-actuated integrated responsive structures (HAIRS). Extreme Mechanics Letters, 2017, 13, 84-90.	2.0	9
5	Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nature Communications, 2017, 8, 14700.	5.8	88
6	Design of anti-icing surfaces: smooth, textured or slippery?. Nature Reviews Materials, 2016, 1, .	23.3	1,048
7	Condensation on slippery asymmetric bumps. Nature, 2016, 531, 78-82.	13.7	656
8	Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chemistry of Materials, 2015, 27, 1792-1800.	3.2	181
9	Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 2015, 6, 8649.	5.8	326
10	Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science and Engineering, 2015, 1, 43-51.	2.6	235
11	Fluorogel Elastomers with Tunable Transparency, Elasticity, Shapeâ€Memory, and Antifouling Properties. Angewandte Chemie - International Edition, 2014, 53, 4418-4422.	7.2	161
12	Fabrics coated with lubricated nanostructures display robust omniphobicity. Nanotechnology, 2014, 25, 014019.	1.3	86
13	Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly <i>Pierella luna</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15630-15634.	3.3	89
14	A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 2014, 32, 1134-1140.	9.4	575
15	Surface Oxidation under Ambient Air—Not Only a Fast and Economical Method to Identify Double Bond Positions in Unsaturated Lipids But Also a Reminder of Proper Lipid Processing. Analytical Chemistry, 2014, 86, 5697-5705.	3.2	20
16	Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Physical Chemistry Chemical Physics, 2013, 15, 581-585.	1.3	284
17	Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013, 13, 1793-1799.	4.5	426
18	Rational Design of Mechanoâ€Responsive Optical Materials by Fine Tuning the Evolution of Strainâ€Dependent Wrinkling Patterns. Advanced Optical Materials, 2013, 1, 381-388.	3.6	115

Philseok Kim

#	Article	IF	CITATIONS
19	Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces. Journal of Chemical Education, 2013, 90, 625-628.	1.1	6
20	Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proceedings of the United States of America, 2013, 110, 5624-5629.	3.3	262
21	Screening Conditions for Rationally Engineered Electrodeposition of Nanostructures (SCREEN): Electrodeposition and Applications of Polypyrrole Nanofibers using Microfluidic Gradients. Small, 2012, 8, 3502-3509.	5.2	8
22	Structural Transformation by Electrodeposition on Patterned Substrates (STEPS): A New Versatile Nanofabrication Method. Nano Letters, 2012, 12, 527-533.	4.5	55
23	Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nature Protocols, 2012, 7, 311-327.	5.5	39
24	Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano, 2012, 6, 6569-6577.	7.3	1,118
25	Patterning the Tips of Optical Fibers with Metallic Nanostructures Using Nanoskiving. Nano Letters, 2011, 11, 632-636.	4.5	121
26	Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology, 2011, 22, 494007.	1.3	133
27	Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials. Current Opinion in Solid State and Materials Science, 2011, 15, 236-245.	5.6	66
28	Bioâ€inspired Design of Submerged Hydrogelâ€Actuated Polymer Microstructures Operating in Response to pH. Advanced Materials, 2011, 23, 1442-1446.	11.1	149
29	Fabrication and Replication of Arrays of Single- or Multicomponent Nanostructures by Replica Molding and Mechanical Sectioning. ACS Nano, 2010, 4, 4017-4026.	7.3	55
30	Microbristle in gels: Toward all-polymer reconfigurable hybrid surfaces. Soft Matter, 2010, 6, 750.	1.2	32
31	Layerâ€Byâ€Layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol–Gel Syntheses of Conformal, Functional, Nanocrystalline Oxide Coatings on Complex 3D (Bio)silica Templates. Advanced Functional Materials, 2009, 19, 2768-2776.	7.8	55
32	High Energy Density Nanocomposites Based on Surface-Modified BaTiO ₃ and a Ferroelectric Polymer. ACS Nano, 2009, 3, 2581-2592.	7.3	758
33	Improved Sensitivity and Physical Properties of Solâ^'Gel Protein Chips Using Large-Scale Material Screening and Selection. Analytical Chemistry, 2006, 78, 7392-7396.	3.2	40