Kenneth Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrathoracic Inoculation of Zika Virus in Aedes aegypti. Bio-protocol, 2021, 11, e4165.	0.2	2
2	The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. Insects, 2021, 12, 73.	1.0	22
3	Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant <i>Aedes aegypti</i> (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. Journal of Medical Entomology, 2021, 58, 1987-1996.	0.9	8
4	Nootkatone Is an Effective Repellent against Aedes aegypti and Aedes albopictus. Insects, 2021, 12, 386.	1.0	12
5	Aedes aegypti Piwi4 Structural Features Are Necessary for RNA Binding and Nuclear Localization. International Journal of Molecular Sciences, 2021, 22, 12733.	1.8	7
6	The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti. Viruses, 2020, 12, 1231.	1.5	17
7	Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by Aedes aegypti. Insects, 2020, 11, 52.	1.0	26
8	The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes. Current Issues in Molecular Biology, 2020, 34, 13-30.	1.0	40
9	Infection with mosquito-borne alphavirus induces selective loss of dopaminergic neurons, neuroinflammation and widespread protein aggregation. Npj Parkinson's Disease, 2019, 5, 20.	2.5	58
10	Analysis of Salivary Clands and Saliva from Aedes albopictus and Aedes aegypti Infected with Chikungunya Viruses. Insects, 2019, 10, 39.	1.0	30
11	Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. ELife, 2019, 8, .	2.8	104
12	Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model. Virology, 2018, 515, 235-242.	1.1	25
13	Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006754.	1.3	38
14	Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters. Viruses, 2018, 10, 232.	1.5	4
15	Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?. Current Opinion in Insect Science, 2017, 22, 45-53.	2.2	45
16	Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology, 2016, 499, 30-39.	1.1	14
17	Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous System following Peripheral Infection. Journal of Virology, 2016, 90, 5785-5796.	1.5	36
18	Arbovirus–mosquito interactions: RNAi pathway. Current Opinion in Virology, 2015, 15, 119-126.	2.6	93

KENNETH OLSON

#	Article	IF	CITATIONS
19	The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions. Viruses, 2015, 7, 820-843.	1.5	129
20	Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain. PLoS Neglected Tropical Diseases, 2014, 8, e2833.	1.3	70
21	Mosquito immune responses to arbovirus infections. Current Opinion in Insect Science, 2014, 3, 22-29.	2.2	36
22	A "microRNA-like―small RNA expressed by Dengue virus?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2359.	3.3	23
23	Subgenomic Reporter RNA System for Detection of Alphavirus Infection in Mosquitoes. PLoS ONE, 2013, 8, e84930.	1.1	7
24	Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiology, 2011, 11, 45.	1.3	155
25	Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and –Incompetent Mosquito Cells. PLoS Neglected Tropical Diseases, 2010, 4, e848.	1.3	186
26	Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway. PLoS Pathogens, 2009, 5, e1000299.	2.1	395
27	Controlling Dengue Virus Transmission in the Field with Genetically Modified Mosquitoes. ACS Symposium Series, 2009, , 123-141.	0.5	3
28	Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. Journal of General Virology, 2008, 89, 2651-2661.	1.3	39
29	Genetic determinants of Sindbis virus strain TR339 affecting midgut infection in the mosquito Aedes aegypti. Journal of General Virology, 2007, 88, 1545-1554.	1.3	25
30	Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiology, 2007, 7, 9.	1.3	383
31	Infectious clone construction of dengue virus type 2, strain Jamaican 1409, and characterization of a conditional E6 mutation. Journal of General Virology, 2006, 87, 2263-2268.	1.3	31
32	Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4198-4203.	3.3	357
33	Developing arbovirus resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 2002, 32, 1333-1343.	1.2	55
34	Flavivirus Susceptibility in Aedes aegypti. Archives of Medical Research, 2002, 33, 379-388.	1.5	303
35	Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States American Journal of Tropical Medicine and Hygiene, 2002, 67, 85-92.	0.6	230