Alejandro AnsÃ3n-Casaos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896569/publications.pdf

Version: 2024-02-01

100 papers 3,862 citations

35 h-index 59 g-index

101 all docs

101 docs citations

times ranked

101

5296 citing authors

#	Article	IF	Citations
1	Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112363.	2.5	24
2	Formamidinium halide salts as precursors of carbon nitrides. Carbon, 2022, 196, 1035-1046.	5.4	9
3	Functionalized carbon dots on TiO2 for perovskite photovoltaics and stable photoanodes for water splitting. International Journal of Hydrogen Energy, 2021, 46, 12180-12191.	3.8	15
4	Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures. Nanomaterials, 2021, 11, 1435.	1.9	9
5	Rational description and modelling of the separation of nanotubes from solid nanoparticles in centrifugation processes. Carbon Trends, 2021, 5, 100084.	1.4	O
6	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50
7	Differential properties and effects of fluorescent carbon nanoparticles towards intestinal theranostics. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110612.	2.5	5
8	Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials, 2020, 10, 1078.	1.9	8
9	The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Physical Chemistry Chemical Physics, 2020, 22, 11474-11484.	1.3	21
10	Modification of Physicochemical Properties and Boosting Electrical Conductivity of Reduced Graphene Oxide Aerogels by Postsynthesis Treatment. Journal of Physical Chemistry C, 2020, 124, 13739-13752.	1.5	9
11	Unique Properties and Behavior of Nonmercerized Type-II Cellulose Nanocrystals as Carbon Nanotube Biocompatible Dispersants. Biomacromolecules, 2019, 20, 3147-3160.	2.6	30
12	Effects of argon ion sputtering on the surface of graphene/polyethylene composites. Surface and Coatings Technology, 2019, 374, 1059-1070.	2.2	7
13	A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 4063-4071.	1.3	9
14	Capacitive and Charge Transfer Effects of Singleâ€Walled Carbon Nanotubes in TiO ₂ Electrodes. ChemPhysChem, 2019, 20, 838-847.	1.0	5
15	Chemical Postdeposition Treatments To Improve the Adhesion of Carbon Nanotube Films on Plastic Substrates. ACS Omega, 2019, 4, 2804-2811.	1.6	11
16	Tribological and mechanical properties of graphene nanoplatelet/PEEK composites. Carbon, 2019, 141, 107-122.	5.4	143
17	Photoactivity improvement of TiO2 electrodes by thin hole transport layers of reduced graphene oxide. Electrochimica Acta, 2019, 298, 279-287.	2.6	10
18	Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catalysis Today, 2018, 301, 2-10.	2.2	40

#	Article	IF	CITATIONS
19	Charge-transfer characteristics in carbon nanostructure/metal oxide photoelectrodes efficiently probed by hydrogen peroxide. Journal of Electroanalytical Chemistry, 2018, 828, 86-90.	1.9	3
20	Nanostructured Carbon Materials: Synthesis and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 177-191.	0.2	0
21	Preparation of Metallic and Semiconducting SWCNT Inks by a Simple Chromatographic Method: A Two-Parameter Study. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 229-238.	0.2	O
22	Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(II) as an indicator of environmental damage. Microchemical Journal, 2018, 141, 271-278.	2.3	24
23	Single-walled carbon nanotubes covalently functionalized with cysteine: A new alternative for the highly sensitive and selective Cd(II) quantification. Sensors and Actuators B: Chemical, 2017, 249, 506-514.	4.0	35
24	Electron Trap States and Photopotential of Nanocrystalline Titanium Dioxide Electrodes Filled with Singleâ€Walled Carbon Nanotubes. ChemElectroChem, 2017, 4, 2300-2307.	1.7	6
25	Activated carbon from cherry stones by chemical activation: Influence of the impregnation method on porous structure. Journal of Wood Chemistry and Technology, 2017, 37, 148-162.	0.9	11
26	Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Composites Science and Technology, 2017, 152, 263-274.	3.8	57
27	Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribology International, 2017, 116, 295-302.	3.0	84
28	Electrochemical behavior of hybrid carbon nanomaterials: the chemistry behind electrochemistry. Electrochimica Acta, 2016, 214, 286-294.	2.6	10
29	Inâ€vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells. IET Nanobiotechnology, 2016, 10, 374-381.	1.9	6
30	Electrochemical sensing of guanine, adenine and 8-hydroxy-2′-deoxyguanosine at glassy carbon modified with single-walled carbon nanotubes covalently functionalized with lysine. RSC Advances, 2016, 6, 13469-13477.	1.7	29
31	Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols. Analytica Chimica Acta, 2016, 909, 51-59.	2.6	33
32	Electrical conductivity and tensile properties of blockâ€copolymerâ€wrapped singleâ€walled carbon nanotube/poly(methyl methacrylate) composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
33	Electrochemical Sensor for the Quantification of Dopamine Using Glassy Carbon Electrodes Modified with Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine. Electroanalysis, 2015, 27, 1565-1571.	1.5	13
34	Peptide-based biomaterials. Linking l-tyrosine and poly l-tyrosine to graphene oxide nanoribbons. Journal of Materials Chemistry B, 2015, 3, 3870-3884.	2.9	24
35	Evaluation of sol–gel TiO 2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres. Chemical Engineering Journal, 2015, 277, 11-20.	6.6	26
36	Transparent conducting films made of different carbon nanotubes, processed carbon nanotubes, and graphene nanoribbons. Chemical Engineering Science, 2015, 138, 566-574.	1.9	13

#	Article	IF	CITATIONS
37	Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochimica Acta, 2014, 135, 404-411.	2.6	18
38	Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene–butadiene–styrene composites for large strain sensor applications. Composites Part B: Engineering, 2014, 61, 136-146.	5.9	166
39	Study of neuron survival on polypyrrole-embedded single-walled carbon nanotube substrates for long-term growth conditions. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	11
40	Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine: Synthesis, Characterization and Analytical Applications for the Development of Electrochemical (Bio)Sensors. Electroanalysis, 2014, 26, 1676-1683.	1.5	14
41	Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon, 2014, 66, 105-118.	5.4	25
42	The effect of gamma-irradiation on few-layered graphene materials. Applied Surface Science, 2014, 301, 264-272.	3.1	104
43	Electrochemical characterization of oligonucleotide-carbon nanotube functionalized using different strategies. Electrochimica Acta, 2014, 140, 489-496.	2.6	8
44	Single-Walled Carbon Nanotubes (SWCNTs) Enhance KCl-, Acetylcholine-, and Serotonin-Induced Contractions and Evoke Oxidative Stress on Rabbit Ileum. Journal of Biomedical Nanotechnology, 2014, 10, 529-542.	0.5	5
45	Characterization and performance evaluation of Pt–Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 910-920.	3.8	47
46	Single-walled carbon nanotube buckypapers as electrocatalyst supports for methanol oxidation. Journal of Power Sources, 2013, 242, 7-14.	4.0	22
47	Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon, 2013, 61, 568-576.	5.4	53
48	A chemically reactive spinning dope for significant improvements in wet spun carbon nanotube fibres. Chemical Communications, 2013, 49, 3973.	2.2	8
49	Combined modification of a TiO2 photocatalyst with two different carbon forms. Applied Surface Science, 2013, 270, 675-684.	3.1	36
50	SWCNTs AS ELECTRON WITHDRAWERS IN NANOCRYSTALLINE ANATASE PHOTOCATALYSTS. Nano, 2012, 07, 1250020.	0.5	5
51	Piezoresistive response of Pluronic-wrapped single-wall carbon nanotube–epoxy composites. Journal of Intelligent Material Systems and Structures, 2012, 23, 909-917.	1.4	8
52	Wrapping of SWCNTs in Polyethylenoxide-Based Amphiphilic Diblock Copolymers: An Approach to Purification, Debundling, and Integration into the Epoxy Matrix. Journal of Physical Chemistry C, 2012, 116, 7399-7408.	1.5	24
53	Choosing the Chemical Route for Carbon Nanotube Integration in Poly(vinylidene fluoride). Journal of Physical Chemistry C, 2012, 116, 16217-16225.	1.5	16
54	Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. Journal of Materials Chemistry, 2012, 22, 21285.	6.7	58

#	Article	IF	Citations
55	Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties. Nanotechnology, 2012, 23, 285702.	1.3	14
56	Tailored SWCNT functionalization optimized for compatibility with epoxy matrices. Nanotechnology, 2012, 23, 285701.	1.3	19
57	High NIR-purity index single-walled carbon nanotubes for electrochemical sensing in microfluidic chips. Lab on A Chip, 2012, 12, 2006.	3.1	32
58	Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochimica Acta, 2012, 64, 1-9.	2.6	22
59	Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochimica Acta, 2012, 62, 163-171.	2.6	79
60	Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors and Actuators A: Physical, 2012, 178, 10-16.	2.0	124
61	Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 19-26.	1.7	32
62	Influence of Air Oxidation on the Surfactant-Assisted Purification of Single-Walled Carbon Nanotubes. Langmuir, 2011, 27, 7192-7198.	1.6	22
63	Effect of Various Aminated Single-Walled Carbon Nanotubes on the Epoxy Cross-Linking Reactions. Journal of Physical Chemistry C, 2011, 115, 7238-7248.	1.5	63
64	Epoxy composites with covalently anchored amino-functionalized SWNTs: towards the tailoring of physical properties through targeted functionalization. Journal of Materials Chemistry, 2011, 21, 14948.	6.7	31
65	Solvent-Free Preparation of High-Toughness Epoxyâ°'SWNT Composite Materials. ACS Applied Materials & Amp; Interfaces, 2011, 3, 1441-1450.	4.0	70
66	The influence of the impregnation method on yield of activated carbon produced by H3PO4 activation. Materials Letters, 2011, 65, 1423-1426.	1.3	7
67	Preparation of a TiO2–MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light. Micro and Nano Letters, 2011, 6, 932.	0.6	47
68	Anatase nanotubes synthesized by a template method and their application as a green photocatalyst. Journal of Materials Science, 2011, 46, 2097-2104.	1.7	19
69	Deeping into the microporosity of porous silicates Ti- and Sn-umbite. Microporous and Mesoporous Materials, 2011, 142, 649-654.	2.2	3
70	Separation of ethylene/ethane mixtures by adsorption on small-pored titanosilicate molecular sieves. Chemical Engineering Science, 2010, 65, 807-811.	1.9	34
71	Integration of block copolymer-wrapped single-wall carbon nanotubes into a trifunctional epoxy resin. Influence on thermal performance. Polymer Degradation and Stability, 2010, 95, 2065-2075.	2.7	14
72	Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers. Carbon, 2010, 48, 1480-1488.	5.4	44

#	Article	lF	Citations
73	Separation of single-walled carbon nanotubes from graphite by centrifugation in a surfactant or in polymer solutions. Carbon, 2010, 48, 2917-2924.	5.4	25
74	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties. Carbon, 2010, 48, 3485-3499.	5 . 4	88
75	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon, 2010, 48, 3500-3511.	5.4	114
76	Carbon Nanotube Effect on Polyaniline Morphology in Water Dispersible Composites. Journal of Physical Chemistry B, 2010, 114, 1579-1585.	1.2	64
77	Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 8285.	6.7	48
78	The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 2009, 20, 315707.	1.3	87
79	XPS Characterization of Silver Exchanged ETS-10 and Mordenite Molecular Sieves. Journal of Nanoscience and Nanotechnology, 2009, 9, 3134-3137.	0.9	7
80	Block Copolymer Assisted Dispersion of Single Walled Carbon Nanotubes and Integration into a Trifunctional Epoxy. Journal of Nanoscience and Nanotechnology, 2009, 9, 6104-6112.	0.9	11
81	Adsorption of carbon dioxide, ethane, and methane on titanosilicate type molecular sieves. Chemical Engineering Science, 2009, 64, 3683-3687.	1.9	63
82	Development and characterization of PEEK/carbon nanotube composites. Carbon, 2009, 47, 3079-3090.	5 . 4	170
83	Separation of Argon and Oxygen by Adsorption on a Titanosilicate Molecular Sieve. Separation Science and Technology, 2009, 44, 1604-1620.	1.3	11
84	Adsorption of ethane and ethylene on modified ETS-10. Chemical Engineering Science, 2008, 63, 4171-4175.	1.9	94
85	Adsorption of argon, oxygen, and nitrogen on silver exchanged ETS-10 molecular sieve. Microporous and Mesoporous Materials, 2008, 109, 577-580.	2.2	41
86	Understanding Carbon–Carbon Composites as Electrodes of Supercapacitors. Journal of the Electrochemical Society, 2007, 154, A579.	1.3	31
87	Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption. Journal of Alloys and Compounds, 2007, 436, 294-297.	2.8	25
88	Xenon Adsorption on Modified ETS-10. Journal of Physical Chemistry C, 2007, 111, 1560-1562.	1.5	57
89	Chemical upgrading of sedimentary Na-Chabazite from Bowie, Arizona. Clays and Clay Minerals, 2007, 55, 235-238.	0.6	7
90	Hydrogen Capacity of Palladium-Loaded Carbon Materials. Journal of Physical Chemistry B, 2006, 110, 6643-6648.	1.2	138

#	Article	IF	CITATIONS
91	DFT-Based Prediction of High-Pressure H2Adsorption on Porous Carbons at Ambient Temperatures from Low-Pressure Adsorption Data Measured at 77 K. Journal of Physical Chemistry B, 2006, 110, 4531-4534.	1.2	52
92	Densities and Viscosities of Binary Mixtures of 1-Bromobutane with Butanol Isomers at Several Temperatures. Journal of Chemical & Engineering Data, 2005, 50, 1478-1483.	1.0	33
93	Densities and Viscosities of Binary Mixtures of 1-Chlorobutane with Butanol Isomers at Several Temperatures. Journal of Chemical & Engineering Data, 2005, 50, 677-682.	1.0	44
94	Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology, 2004, 15, 1503-1508.	1.3	48
95	Double resonance features in the Raman spectrum of carbon nanotubes. Physical Review B, 2004, 70, .	1.1	2
96	Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample reduction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 120-123.	1.7	29
97	Hydrogen adsorption studies on single wall carbon nanotubes. Carbon, 2004, 42, 1243-1248.	5.4	154
98	Porosity, Surface Area, Surface Energy, and Hydrogen Adsorption in Nanostructured Carbons. Journal of Physical Chemistry B, 2004, 108, 15820-15826.	1.2	112
99	Single-Walled Carbon Nanotubes as Electrodes in Supercapacitors. Journal of the Electrochemical Society, 2004, 151, A831.	1.3	118
100	Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology, 2003, 14, 691-695.	1.3	102