Ivana Trapani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896314/publications.pdf

Version: 2024-02-01

15 papers	1,001 citations	14 h-index	1113639 15 g-index
15	15	15	1251 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Large gene delivery to the retina with AAV vectors: are we there yet?. Gene Therapy, 2021, 28, 220-222.	2.3	16
2	Inclusion of a degron reduces levels of undesired inteins after AAV-mediated protein trans-splicing in the retina. Molecular Therapy - Methods and Clinical Development, 2021, 23, 448-459.	1.8	12
3	Can Adeno-Associated Viral Vectors Deliver Effectively Large Genes?. Human Gene Therapy, 2020, 31, 47-56.	1.4	49
4	Lightâ€responsive microRNA miRâ€211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance. EMBO Journal, 2020, 39, e102468.	3.5	30
5	Has retinal gene therapy come of age? From bench to bedside and back to bench. Human Molecular Genetics, 2019, 28, R108-R118.	1.4	41
6	Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Science Translational Medicine, $2019,11,.$	5.8	109
7	Adeno-Associated Viral Vectors as a Tool for Large Gene Delivery to the Retina. Genes, 2019, 10, 287.	1.0	48
8	Dual AAV Vectors for Stargardt Disease. Methods in Molecular Biology, 2018, 1715, 153-175.	0.4	23
9	Seeing the Light after 25 Years of Retinal Gene Therapy. Trends in Molecular Medicine, 2018, 24, 669-681.	3.5	93
10	Gene Therapy of Inherited Retinal Degenerations: Prospects and Challenges. Human Gene Therapy, 2015, 26, 193-200.	1.4	39
11	Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Human Molecular Genetics, 2015, 24, 6811-6825.	1.4	73
12	Gene Therapy of ABCA4-Associated Diseases. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017301-a017301.	2.9	30
13	Effective delivery of large genes to the retina by dual AAV vectors. EMBO Molecular Medicine, 2014, 6, 194-211.	3.3	202
14	Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Therapy, 2014, 21, 450-456.	2.3	90
15	Vector platforms for gene therapy of inherited retinopathies. Progress in Retinal and Eye Research, 2014, 43, 108-128.	7.3	146