Liping Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896031/publications.pdf Version: 2024-02-01

LIDING PANG

#	Article	IF	CITATIONS
1	Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 2013, 463-464, 120-130.	3.9	196
2	Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification. Vadose Zone Journal, 2006, 5, 1035-1047.	1.3	143
3	Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 2010, 44, 1255-1269.	5.3	140
4	Microbial Removal Rates in Subsurface Media Estimated From Published Studies of Field Experiments and Large Intact Soil Cores. Journal of Environmental Quality, 2009, 38, 1531-1559.	1.0	104
5	Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. Journal of Contaminant Hydrology, 2000, 44, 19-46.	1.6	98
6	Heavy Metals in Soil, Plants and Groundwater Following High-Rate Sewage Sludge Application to Land. Water, Air, and Soil Pollution, 2003, 150, 319-358.	1.1	89
7	Rhodamine WT and Bacillus subtilis Transport through an Alluvial Gravel Aquifer. Ground Water, 1998, 36, 112-122.	0.7	87
8	Solutions and verification of a scale-dependent dispersion model. Journal of Contaminant Hydrology, 2001, 53, 21-39.	1.6	83
9	Application of the method of temporal moments to interpret solute transport with sorption and degradation. Journal of Contaminant Hydrology, 2003, 60, 123-134.	1.6	72
10	Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology, 2002, 57, 241-258.	1.6	70
11	Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Research, 2010, 44, 1050-1061.	5.3	68
12	Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Environment International, 2004, 29, 907-921.	4.8	64
13	Modeling Transport of Microbes in Ten Undisturbed Soils under Effluent Irrigation. Vadose Zone Journal, 2008, 7, 97-111.	1.3	60
14	Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: Implications in the estimation of setback distances. Journal of Contaminant Hydrology, 2005, 77, 165-194.	1.6	59
15	Non-equilibrium transport of Cd in alluvial gravels. Journal of Contaminant Hydrology, 1999, 36, 185-206.	1.6	51
16	Field-scale physical non-equilibrium transport in an alluvial gravel aquifer. Journal of Contaminant Hydrology, 1999, 38, 447-464.	1.6	48
17	Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles. Water Research, 2014, 62, 167-179.	5.3	44
18	Evaluation of bacteria-facilitated cadmium transport in gravel columns using the HYDRUS colloid-facilitated solute transport model. Water Resources Research, 2006, 42, .	1.7	41

LIPING PANG

#	Article	IF	CITATIONS
19	Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter. Food and Environmental Virology, 2015, 7, 261-268.	1.5	33
20	Field study of pesticide leaching in a Himatangi sand (Manawatu) and a Kiripaka bouldery clay loam (Northland). 2. Simulation using LEACHM, HYDRUS-1D, GLEAMS, and SPASMO models. Soil Research, 2005, 43, 471.	0.6	32
21	Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field. Science of the Total Environment, 2013, 443, 55-64.	3.9	27
22	Tracking effluent discharges in undisturbed stony soil and alluvial gravel aquifer using synthetic DNA tracers. Science of the Total Environment, 2017, 592, 144-152.	3.9	27
23	Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media. Pest Management Science, 2005, 61, 133-143.	1.7	26
24	Modifying the Surface Charge of Pathogen‣ized Microspheres for Studying Pathogen Transport in Groundwater. Journal of Environmental Quality, 2009, 38, 2210-2217.	1.0	26
25	Water tracking in surface water, groundwater and soils using free and alginate-chitosan encapsulated synthetic DNA tracers. Water Research, 2020, 184, 116192.	5.3	25
26	A field tracer study of attenuation of atrazine, hexazinone and procymidone in a pumice sand aquifer. Pest Management Science, 2001, 57, 1142-1150.	1.7	21
27	Distance and Flow Effects on Microsphere Transport in a Large Gravel Column. Journal of Environmental Quality, 2006, 35, 1204-1212.	1.0	20
28	Adsorption and transport of cadmium and rhodamine WT in pumice sand columns. New Zealand Journal of Marine and Freshwater Research, 2004, 38, 367-378.	0.8	19
29	Modeling the Impact of Clustered Septic Tank Systems on Groundwater Quality. Vadose Zone Journal, 2006, 5, 599-609.	1.3	19
30	Pesticide sorption and degradation characteristics in New Zealand soils—a synthesis from seven field trials. New Zealand Journal of Crop and Horticultural Science, 2008, 36, 9-30.	0.7	19
31	A Field Study of Nonequilibrium and Facilitated Transport of Cd in an Alluvial Gravel Aquifer. Ground Water, 1999, 37, 785-792.	0.7	18
32	Attenuation and transport of atrazine and picloram in an alluvial gravel aquifer: A tracer test and batch study. New Zealand Journal of Marine and Freshwater Research, 1999, 33, 279-291.	0.8	17
33	Biotin- and Glycoprotein-Coated Microspheres: Potential Surrogates for Studying Filtration ofCryptosporidium parvumin Porous Media. Environmental Science & Technology, 2012, 46, 11779-11787.	4.6	17
34	Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction. Journal of Contaminant Hydrology, 2008, 100, 127-136.	1.6	16
35	Use of rhodamine WT with XAD-7 resin for determining groundwater flow paths. Hydrogeology Journal, 2002, 10, 368-376.	0.9	15
36	A Gel Filtration-Based Method for the Purification of Infectious Rotavirus Particles for Environmental Research Applications. Food and Environmental Virology, 2013, 5, 231-235.	1.5	13

LIPING PANG

#	Article	IF	CITATIONS
37	Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media—laboratory studies. Water Research, 2021, 196, 117051.	5.3	13
38	Bacterial leaching from dairy shed effluent applied to a fine sandy loam under irrigated pasture. Soil Research, 2008, 46, 552.	0.6	11
39	Attenuation of rotavirus, MS2 bacteriophage and biomolecule-modified silica nanoparticles in undisturbed silt loam over gravels dosed with onsite wastewater. Water Research, 2020, 169, 115272.	5.3	10
40	Size exclusion-based purification and PCR-based quantitation of MS2 bacteriophage particles for environmental applications. Journal of Virological Methods, 2015, 213, 135-138.	1.0	9
41	Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media. Science of the Total Environment, 2016, 550, 60-68.	3.9	9
42	Reductions of human enteric viruses in 10 commonly used activated carbon, polypropylene and polyester household drinking-water filters. Water Research, 2022, 213, 118174.	5.3	9
43	Transport of Escherichia coli and F-RNA Bacteriophages in a 5-M Column of Saturated, Heterogeneous Gravel. Water, Air, and Soil Pollution, 2012, 223, 2347-2360.	1.1	7
44	Evaluating the effect of temperature induced water viscosity and density fluctuations on virus and DOC removal during river bank filtration - a scenario analysis. River Systems, 2013, 20, 169-184.	0.2	7
45	Degradation and adsorption of synthetic DNA water tracers in environmental matrices. Science of the Total Environment, 2022, 844, 157146.	3.9	6
46	Key Features of Artificial Aquifers for Use in Modeling Contaminant Transport. Ground Water, 2008, 46, 814-828.	0.7	5
47	PRESENCE OF PREFERENTIAL FLOW PATHS IN SHALLOW GROUNDWATER SYSTEMS AS INDICATED BY TRACER EXPERIMENTS AND GEOPHYSICAL SURVEYS. , 2004, , 79-91.		5
48	Surface-Modified Biopolymer Microparticles: A Potential Surrogate for Studying Legionella pneumophila Attachment to Biofilms in Engineered Water Systems. ACS ES&T Water, 2021, 1, 2057-2066.	2.3	3
49	Utility of a field deployable qPCR instrument for analyzing freshwater quality. , 2021, 4, e20223.		3
50	Performance analysis of sheep wool fibres as a water filter medium for human enteric virus removal. Journal of Water Process Engineering, 2022, 47, 102800.	2.6	3
51	Cryptosporidium surrogate removal in pilot-scale rapid sand filters comprising anthracite, pumice or engineered ceramic granular media, and its correlation with turbidity. Journal of Water Process Engineering, 2022, 46, 102614.	2.6	2
52	Evaluation of Biopolymer Materials and Synthesis Techniques to Develop a Rod-Shaped Biopolymer Surrogate for Legionella pneumophila. Polymers, 2022, 14, 2571.	2.0	2
53	Reply to W.P. Johnson's comment on â€~Filtration and transport of Bacillus subtilus spores and the F-RNA phage MS2 in a course alluvial gravel aquifer: Implications in the estimation of setback distances' by Pang et al., 2005. Journal of Contaminant Hydrology, 2006, 86, 162.	1.6	1
54	Cryptosporidium surrogate removal in five commonly used point-of-use domestic filters. Journal of Water Process Engineering, 2021, 44, 102390.	2.6	1

#	Article	IF	CITATIONS
55	From Groundwater to Drinking Water – Current Approaches for Microbial Monitoring and Risk Assessment in Porous Aquifers. , 2022, , .		0