Suzanne Bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3896008/publications.pdf Version: 2024-02-01

SUZANNE RAL

#	Article	IF	CITATIONS
1	CD45RA ⁺ CD62L ^{â^'} ILCs in human tissues represent a quiescent local reservoir for the generation of differentiated ILCs. Science Immunology, 2022, 7, eabj8301.	5.6	14
2	Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Science Immunology, 2021, 6, .	5.6	65
3	Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity, 2021, 54, 291-307.e7.	6.6	134
4	Plasticity of innate lymphoid cell subsets. Nature Reviews Immunology, 2020, 20, 552-565.	10.6	203
5	T _{regs} in fibrosis: To know your enemy, you must become your enemy. Science Immunology, 2019, 4, .	5.6	5
6	KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2â^' ILCs biased toward ILC2 or ILC3. Journal of Experimental Medicine, 2019, 216, 1762-1776.	4.2	93
7	IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nature Communications, 2019, 10, 2162.	5.8	95
8	Do eosinophils contribute to oxidative stress in mild asthma?. Clinical and Experimental Allergy, 2019, 49, 929-931.	1.4	23
9	Eosinophils capture viruses, a capacity that is defective in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1898-1909.	2.7	79
10	Anti–IL-5 in Mild Asthma Alters Rhinovirus-induced Macrophage, B-Cell, and Neutrophil Responses (MATERIAL). A Placebo-controlled, Double-Blind Study. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 508-517.	2.5	68
11	Interferon-induced epithelial response to rhinovirus 16 in asthma relates to inflammation and FEV1. Journal of Allergy and Clinical Immunology, 2019, 143, 442-447.e10.	1.5	18
12	Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 837-850.	2.7	79
13	The role of innate lymphoid cells in airway inflammation. Current Opinion in Pulmonary Medicine, 2018, 24, 11-17.	1.2	10
14	New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunological Reviews, 2018, 286, 74-85.	2.8	67
15	Isolation of Human Innate Lymphoid Cells. Current Protocols in Immunology, 2018, 122, e55.	3.6	21
16	Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 164-173.	3.5	69
17	Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Reports, 2017, 18, 1761-1773.	2.9	98
18	An early innate response underlies severe influenzaâ€induced exacerbations of asthma in a novel steroidâ€insensitive and antiâ€ <scp>IL</scp> â€5â€responsive mouse model. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 737-753.	2.7	38

SUZANNE BAL

#	Article	IF	CITATIONS
19	IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature Immunology, 2016, 17, 636-645.	7.0	397
20	LSC Abstract – A dual role for eosinophils upon viral exposure; its relevance in virus-induced loss of asthma control. , 2016, , .		0
21	The caspase inhibitor zVAD increases lung inflammation in pneumovirus infection in mice. Physiological Reports, 2015, 3, e12332.	0.7	9
22	Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice. European Journal of Pharmaceutical Sciences, 2012, 45, 475-481.	1.9	94
23	Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release, 2012, 161, 363-376.	4.8	93
24	Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine, 2011, 29, 1045-1052.	1.7	83
25	Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine, 2011, 29, 4025-4032.	1.7	54
26	Adjuvant effect of cationic liposomes and CpG depends on administration route. Journal of Controlled Release, 2011, 154, 123-130.	4.8	65
27	Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. Journal of Controlled Release, 2011, 156, 46-52.	4.8	94
28	Transcutaneous Immunization Studies in Mice Using Diphtheria Toxoid-Loaded Vesicle Formulations and a Microneedle Array. Pharmaceutical Research, 2011, 28, 145-158.	1.7	43
29	Microneedle-Based Transcutaneous Immunisation in Mice with N-Trimethyl Chitosan Adjuvanted Diphtheria Toxoid Formulations. Pharmaceutical Research, 2010, 27, 1837-1847.	1.7	73
30	Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. Journal of Controlled Release, 2010, 142, 374-383.	4.8	86
31	Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. Journal of Controlled Release, 2010, 147, 218-224.	4.8	66
32	Advances in transcutaneous vaccine delivery: Do all ways lead to Rome?. Journal of Controlled Release, 2010, 148, 266-282.	4.8	177
33	<i>In vivo</i> visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Physics Letters, 2010, 7, 242-246.	0.6	59
34	Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010, 28, 6282-6291.	1.7	176
35	Antigenâ^'Adjuvant Nanoconjugates for Nasal Vaccination: An Improvement over the Use of Nanoparticles?. Molecular Pharmaceutics, 2010, 7, 2207-2215.	2.3	54
36	Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine, 2009, 27, 4010-4017.	1.7	103

#	Article	IF	CITATIONS
37	In vivo assessment of safety of microneedle arrays in human skin. European Journal of Pharmaceutical Sciences, 2008, 35, 193-202.	1.9	248
38	Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. Journal of Controlled Release, 2008, 128, 80-88.	4.8	180
39	Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. Journal of Controlled Release, 2007, 117, 238-245.	4.8	186