Yong-Sam Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895894/publications.pdf

Version: 2024-02-01

YONG-SAM KIM

#	Article	IF	CITATIONS
1	Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nature Communications, 2018, 9, 3651.	12.8	137
2	Recent advances in the CRISPR genome editing tool set. Experimental and Molecular Medicine, 2019, 51, 1-11.	7.7	120
3	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	17.5	119
4	Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Research, 2020, 48, 10576-10589.	14.5	104
5	Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation. Scientific Reports, 2016, 6, 21175.	3.3	81
6	Functional Proteomics Study Reveals That N-Acetylglucosaminyltransferase V Reinforces the Invasive/Metastatic Potential of Colon Cancer through Aberrant Glycosylation on Tissue Inhibitor of Metalloproteinase Molecular and Cellular Proteomics, 2008, 7, 1-14.	3.8	78
7	Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Scientific Reports, 2019, 9, 11960.	3.3	75
8	Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends in Biotechnology, 2019, 37, 870-881.	9.3	73
9	Identification of target proteins ofN-acetylglucosaminyl transferaseâ€V in human colon cancer and implications of protein tyrosine phosphatase kappa in enhanced cancer cell migration. Proteomics, 2006, 6, 1187-1191.	2.2	37
10	Overexpression and \hat{l}^2 -1,6-N-Acetylglucosaminylation-initiated Aberrant Glycosylation of TIMP-1. Journal of Biological Chemistry, 2012, 287, 32467-32478.	3.4	33
11	Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget, 2015, 6, 23837-23844.	1.8	24
12	Identification of target proteins ofN-acetylglucosaminyl-transferase V and fucosyltransferase 8 in human gastric tissues by glycomic approach. Proteomics, 2004, 4, 3353-3358.	2.2	21
13	Differential proteomic approach for identification and verification of aberrantly glycosylated proteins in adenocarcinoma lung cancer (ADLC) plasmas by lectin-capturing and targeted mass spectrometry. Journal of Proteomics, 2014, 106, 221-229.	2.4	11
14	N-Acetylglucosaminyltransferase V triggers overexpression of MT1-MMP and reinforces the invasive/metastatic potential of cancer cells. Biochemical and Biophysical Research Communications, 2013, 431, 658-663.	2.1	9
15	Semi-quantitative Measurement of a Specific Glycoform Using a DNA-tagged Antibody and Lectin Affinity Chromatography for Glyco-biomarker Development *. Molecular and Cellular Proteomics, 2015, 14, 782-795.	3.8	9
16	PHLPP1 regulates contact inhibition by dephosphorylating Mst1 at the inhibitory site. Biochemical and Biophysical Research Communications, 2014, 443, 1263-1269.	2.1	7
17	Lectin from Sambucus sieboldiana abrogates the anoikis resistance of colon cancer cells conferred by N-acetylglucosaminyltransferase V during hematogenous metastasis. Oncotarget, 2017, 8, 42238-42251.	1.8	7
18	In vivo genome editing using the Cpf1 ortholog derived from Eubacterium eligens. Scientific Reports, 2019, 9, 13911.	3.3	6

#	Article	IF	CITATIONS
19	Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2â€2-O-methylated uridinylate-rich 3â€2-overhang in mouse zygotes. Experimental and Molecular Medicine, 2020, 52, 1823-1830.	7.7	6
20	Defect in cytosolic Neu2 sialidase abrogates lipid metabolism and impairs muscle function in vivo. Scientific Reports, 2022, 12, 3216.	3.3	5
21	Î ² 1,6â€ <scp>GlcNAc</scp> Linkage to the Core Glycan on <scp>TIMP</scp> â€1 Affects Its Gelatinase Inhibitory Activities: Aberrantly Glycosylated <scp>TIMP</scp> â€1â€ <scp>MMP2</scp> Complex Modeling Shows Weaker Interaction Compared to Biâ€antennary Glycosylated <scp>TIMP</scp> â€1. Bulletin of the Korean Chemical Society. 2017. 38. 384-388.	1.9	2
22	Aglycosylated antibody-producing mice for aglycosylated antibody-lectin coupled immunoassay for the quantification of tumor markers (ALIQUAT). Communications Biology, 2020, 3, 636.	4.4	2
23	Improving CRISPR Technology to Sustain Animal Welfare: Response to Bailey. Trends in Biotechnology, 2019, 37, 922-923.	9.3	0
24	One-step genotyping method in CRISPR based on short inner primer-assisted, tetra primer-paired amplifications. Molecular and Cellular Probes, 2021, 55, 101675.	2.1	0