List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versatile and Simple Strategy for Preparing Bilayer Hydrogels with Janus Characteristics. ACS Applied Materials & Interfaces, 2022, 14, 4579-4587.	8.0	12
2	<scp>Fe₃O₄</scp> @ <scp>PA6</scp> / <scp>MWCNT</scp> composites with multiple gradient segregated structures for electromagnetic shielding with low reflection. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
3	Ionic interaction-driven switchable bactericidal surfaces. Acta Biomaterialia, 2022, 142, 124-135.	8.3	6
4	Photo-switchable supramolecular comb-like polymer brush based on host–guest recognition for use as antimicrobial smart surface. Journal of Materials Chemistry B, 2022, 10, 3039-3047.	5.8	7
5	Conductive Adhesive and Antibacterial Zwitterionic Hydrogel Dressing for Therapy of Full-Thickness Skin Wounds. Frontiers in Bioengineering and Biotechnology, 2022, 10, 833887.	4.1	7
6	Development of PA6/GO microspheres with good processability for SLS 3D printing. Polymer Engineering and Science, 2022, 62, 1700-1709.	3.1	5
7	Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chemical Engineering Journal, 2022, 438, 135607.	12.7	37
8	"Anti-Condensation―Aluminum Superhydrophobic Surface by Smaller Nanostructures. Frontiers in Bioengineering and Biotechnology, 2022, 10, 887902.	4.1	1
9	Structural Polyfluorene Derivative Nanocarriers with Promising Fluorescence Emission and Antifouling Properties. ACS Applied Polymer Materials, 2022, 4, 4013-4024.	4.4	3
10	Constructing <scp>PA6</scp> / <scp>PS</scp> composite foam with porous and hybrid isolation structure to synergistically control absorption and electromagnetic interference shielding effectiveness. Journal of Applied Polymer Science, 2022, 139, .	2.6	1
11	Osteichthyes skin-inspired tough and sticky composite hydrogels for dynamic adhesive dressings. Composites Part B: Engineering, 2022, 241, 110010.	12.0	23
12	Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Composites Part B: Engineering, 2022, 243, 110119.	12.0	14
13	Conductive thermoplastic polyurethane nanocomposite foams derived from a cellulose/MWCNTs aerogel framework: simultaneous enhancement of piezoresistance, strength, and endurance. Journal of Materials Chemistry C, 2021, 9, 13103-13114.	5.5	30
14	Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS Applied Materials & amp; Interfaces, 2021, 13, 3089-3097.	8.0	39
15	Host–Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 14543-14551.	8.0	32
16	Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. European Polymer Journal, 2021, 148, 110350.	5.4	25
17	Comb-like structural modification stabilizes polyvinylidene fluoride membranes to realize thermal-regulated sustainable transportation efficiency. Journal of Colloid and Interface Science, 2021, 591, 173-183.	9.4	10
18	Zwitterionic Nanocapsules with Salt- and Thermo-Responsiveness for Controlled Encapsulation and Release ACS Applied Materials & app: Interfaces, 2021, 13, 47090-47099	8.0	9

#	Article	IF	CITATIONS
19	Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing. International Journal of Biological Macromolecules, 2021, 190, 754-762.	7.5	25
20	Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chemistry of Materials, 2021, 33, 8418-8429.	6.7	85
21	Fast-cured UV-LED polymer materials filled with high mineral contents as wear-resistant, antibacterial coatings. Chemical Engineering Journal, 2020, 382, 122927.	12.7	15
22	Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure. ACS Applied Materials & Interfaces, 2020, 12, 53394-53402.	8.0	19
23	A Universal Coating Strategy for Controllable Functionalized Polymer Surfaces. Advanced Functional Materials, 2020, 30, 2004633.	14.9	40
24	Novel Salt-Responsive SiO ₂ @Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 42169-42178.	8.0	12
25	Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.	10.3	147
26	Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. Journal of Materials Chemistry A, 2020, 8, 11261-11274.	10.3	72
27	Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. Journal of Colloid and Interface Science, 2020, 578, 242-253.	9.4	39
28	From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 2020, 8, 3171-3191.	5.8	131
29	Natural Lipid Inspired Hydrogel–Organogel Bilayer Actuator with a Tough Interface and Multiresponsive, Rapid, and Reversible Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 7646-7658.	3.7	19
30	GO@Fe3O4@CuSilicate Composite with a Hierarchical Structure: Fabrication, Microstructure, and Highly Electromagnetic Shielding Performance. ACS Omega, 2020, 5, 7940-7949.	3.5	9
31	Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. Journal of Materials Chemistry B, 2019, 7, 5762-5774.	5.8	48
32	"Janus-Featured―Hydrogel with Antifouling and Bacteria-Releasing Properties. Industrial & Engineering Chemistry Research, 2019, 58, 17792-17801.	3.7	9
33	Fundamentals and applications of zwitterionic antifouling polymers. Journal Physics D: Applied Physics, 2019, 52, 403001.	2.8	110
34	Super Hydrophilic Semi-IPN Fluorescent Poly(<i>N</i> -(2-hydroxyethyl)acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury(II) Detection in a Bacteria-Laden System. ACS Applied Bio Materials, 2019, 2, 906-915.	4.6	16
35	One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations. ACS Applied Materials & amp; Interfaces, 2019, 11, 25417-25426.	8.0	31
36	High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. Journal of Materials Chemistry A, 2019, 7, 15420-15431.	10.3	180

#	Article	IF	CITATIONS
37	Dark, heat-reflective, anti-ice rain and superhydrophobic cement concrete surfaces. Construction and Building Materials, 2019, 220, 21-28.	7.2	54
38	Electric Assisted Salt-Responsive Bacterial Killing and Release of Polyzwitterionic Brushes in Low-Concentration Salt Solution. Langmuir, 2019, 35, 8285-8293.	3.5	13
39	Long-term stability and salt-responsive behavior of polyzwitterionic brushes with cross-linked structure. Progress in Organic Coatings, 2019, 134, 153-161.	3.9	22
40	Dual-stimulus bilayer hydrogel actuators with rapid, reversible, bidirectional bending behaviors. Journal of Materials Chemistry C, 2019, 7, 4970-4980.	5.5	76
41	GO@Polyaniline Nanorod Array Hierarchical Structure: A Photothermal Agent with High Photothermal Conversion Efficiency for Fast Near-Infrared Responsive Hydrogels. Industrial & Engineering Chemistry Research, 2019, 58, 3893-3901.	3.7	16
42	Fluorescent Hydrogelâ€Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection. Advanced Materials Technologies, 2019, 4, 1800201.	5.8	46
43	Light-triggered pH/thermal multisensitive polyelectrolyte/ITO glass hybrid electrode. Applied Surface Science, 2019, 464, 273-279.	6.1	7
44	Extrusion Foaming of Lightweight Polystyrene Composite Foams with Controllable Cellular Structure for Sound Absorption Application. Polymers, 2019, 11, 106.	4.5	32
45	Enhanced sound insulation and mechanical properties based on inorganic fillers/thermoplastic elastomer composites. Journal of Thermoplastic Composite Materials, 2019, 32, 936-950.	4.2	13
46	Salt- and thermo-responsive polyzwitterionic brush prepared via surface-initiated photoiniferter-mediated polymerization. Applied Surface Science, 2018, 450, 130-137.	6.1	18
47	Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Current Opinion in Chemical Engineering, 2018, 19, 86-93.	7.8	89
48	Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir, 2018, 34, 97-105.	3.5	80
49	Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. Journal of Materials Chemistry B, 2018, 6, 950-960.	5.8	78
50	Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochimica Acta, 2018, 274, 288-297.	5.2	51
51	Bacteria killing and release of salt-responsive, regenerative, double-layered polyzwitterionic brushes. Chemical Engineering Journal, 2018, 333, 1-10.	12.7	60
52	Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures. ACS Applied Materials & Interfaces, 2018, 10, 21642-21653.	8.0	142
53	Salt-Responsive "Killing and Release―Antibacterial Surfaces of Mixed Polymer Brushes. Industrial & Engineering Chemistry Research, 2018, 57, 8938-8945. 	3.7	36
54	Preparation of microporous thermoplastic polyurethane by low-temperature supercritical CO ₂ foaming. Journal of Cellular Plastics, 2017, 53, 135-150.	2.4	28

#	Article	IF	CITATIONS
55	GO@CuSilicate nano-needle arrays hierarchical structure: a new route to prepare high optical transparent, excellent self-cleaning and anticorrosion superhydrophobic surface. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	7
56	lonic liquidâ€modified graphene/poly(vinyl alcohol) composite with enhanced properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
57	Photoresponsive polyelectrolyte/mesoporous silica hybrid materials with remote-controllable ionic transportation. Chemical Engineering Journal, 2017, 322, 445-453.	12.7	12
58	Graphene oxide functionalized by poly(ionic liquid)s for carbon dioxide capture. Journal of Applied Polymer Science, 2017, 134, .	2.6	13
59	Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects. ACS Applied Materials & Interfaces, 2017, 9, 20843-20851.	8.0	119
60	Synthesis and characterization of lignosulfonate-derived hierarchical porous graphitic carbons for electrochemical performances. Microporous and Mesoporous Materials, 2017, 247, 184-189.	4.4	21
61	Salt-Induced Regenerative Surface for Bacteria Killing and Release. Langmuir, 2017, 33, 7160-7168.	3.5	49
62	Encapsulated graphenes through ultrasonically initiated <i>in situ</i> polymerization: A route to high dielectric permittivity, low loss materials with low percolation threshold. Journal of Applied Polymer Science, 2017, 134, .	2.6	4
63	Improved crystallizability and processability of ultra high molecular weight polyethylene modified by poly(amido amine) dendrimers. Polymer Engineering and Science, 2017, 57, 153-160.	3.1	15
64	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.	8.3	74
65	Preparation of polymer foams with a gradient of cell size: Further exploring the nucleation effect of porous inorganic materials in polymer foaming. Materials Today Communications, 2016, 9, 1-6.	1.9	33
66	Synthesis of POSS-based star-shaped poly(ionic liquid)s and its application in supercritical CO2 microcellular foaming of polystyrene. Journal of Polymer Research, 2016, 23, 1.	2.4	4
67	Aqueous lubrication of poly(N-hydroxyethyl acrylamide) brushes: a strategy for their enhanced load bearing capacity and wear resistance. RSC Advances, 2016, 6, 21961-21968.	3.6	22
68	Synthesis and characterization of "comb-like―poly(ionic liquid-co-styrene): expected applications in graphene dispersion and CO2 separation. RSC Advances, 2015, 5, 32853-32861.	3.6	12
69	Synthesis of ionic liquids copolymerize styrene and their nucleation, carbon dioxide sorption effect on supercritical carbon dioxide microcellular foaming. Journal of Polymer Research, 2015, 22, 1.	2.4	2
70	Decolorization of rhodamine B using hydrogen peroxide and H ₃ PW ₁₂ O ₄₀ @C photocatalyst synthesized <i>in situ</i> under ultraviolet irradiation. Desalination and Water Treatment, 2015, 53, 2970-2979.	1.0	13
71	Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir, 2015, 31, 9125-9133.	3.5	150
72	Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature. Polymer Chemistry, 2015, 6, 3529-3536.	3.9	39

#	Article	IF	CITATIONS
73	Effect of nanoporous structure and polymer brushes on the ionic conductivity of poly(methacrylic) Tj ETQq1 1 0.	784314 rg 3.6	BT/Overlock
74	Visible light responsive sulfated rare earth doped TiO2@fumed SiO2 composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. Journal of Hazardous Materials, 2014, 267, 88-97.	12.4	52
75	Synthesis and Characterization of Antifouling Poly(<i>N</i> -acryloylaminoethoxyethanol) with Ultralow Protein Adsorption and Cell Attachment. Langmuir, 2014, 30, 10398-10409.	3.5	66
76	Probing the Structural Dependence of Carbon Space Lengths of Poly(<i>N</i> -hydroxyalkyl) Tj ETQq0 0 0 rgBT /C	Verlock 10 5.4) Tf 50 622 T 52
77	Probing structure–heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 95, 228-235.	3.2	20
78	Effect of surface modification of graphite oxide on the morphological, thermal, and mechanical properties of polyurea/graphite oxide composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
79	Preparation of polystyrene/graphene oxide composites and their supercritical carbon dioxide foaming. Journal of Polymer Research, 2013, 20, 1.	2.4	14
80	Multiwalled carbon nanotubes grafted with polyamidoamine (PAMAM) dendrimers and their influence on polystyrene supercritical carbon dioxide foaming. Journal of Supercritical Fluids, 2013, 82, 13-21.	3.2	13
81	Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chemistry, 2013, 15, 3057.	9.0	118
82	Graphite oxide platelets functionalized by poly(ionic liquid) brushes and their chemical reduction. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9
83	A New Promising Nucleating Agent for Polymer Foaming: Applications of Ordered Mesoporous Silica Particles in Polymethyl Methacrylate Supercritical Carbon Dioxide Microcellular Foaming. Industrial & Engineering Chemistry Research, 2013, 52, 14169-14178.	3.7	25
84	The characterizations and electrochemical properties of lignosulfonate templates based mesoporous NiO. AIP Conference Proceedings, 2013, , .	0.4	2
85	Mesoporous silica particles grafted with polystyrene brushes as a nucleation agent for polystyrene supercritical carbon dioxide foaming. Journal of Applied Polymer Science, 2013, 130, 4308-4317.	2.6	14
86	Intercalation of montmorillonite based on dendritic quaternary ammonium: preparation and characterization. E-Polymers, 2012, 12, .	3.0	1
87	Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology, 2012, 23, 365702.	2.6	194
88	Synthesis of silica particles grafted with poly(ionic liquid) and their nucleation effect on microcellular foaming of polystyrene using supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 62, 197-203.	3.2	34
89	Self-assembly between graphene sheets and cationic poly(methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	42
90	Mechanical and thermal properties of attapulgite clay reinforced polymethylmethacrylate nanocomposites. Polymers for Advanced Technologies, 2011, 22, 1912-1918.	3.2	32

#	Article	IF	CITATIONS
91	Physical properties of ligninâ€based polypropylene blends. Polymer Composites, 2011, 32, 1019-1025.	4.6	106
92	Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. Journal of Supercritical Fluids, 2011, 56, 201-207.	3.2	136
93	Preparation and characterization of polystyrene (PS)/layered double hydroxides (LDHs) composite by a heterocoagulation method. Colloid and Polymer Science, 2010, 288, 761-767.	2.1	22
94	Influence of interaction between poly(methyl methacrylate) and clay on the properties of nanocomposites prepared by a heterocoagulation method. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 733-738.	2.1	3
95	Influence of clay and predispersion method on the structure and properties of polystyrene (PS)â€clay nanocomposites. Polymer Engineering and Science, 2009, 49, 1937-1944.	3.1	10
96	Positron annihilation study in inorganicâ€polymer nanoâ€composites. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2397-2400.	0.8	15
97	Synthesis and foaming of water expandable polystyrene-activated carbon (WEPSAC). Polymer, 2009, 50, 3169-3173.	3.8	16
98	Effect of CO ₂ exposure on free volumes in polystyrene studied by positron annihilation spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 388-405.	2.1	20
99	Influence of organoclay and preparation technique on the morphology of polyamide6/polystyrene/organoclay nanocomposites. Journal of Applied Polymer Science, 2008, 110, 276-282.	2.6	11
100	Comparison of Carbon Nanofibers and Activated Carbon on Carbon Dioxide Foaming of Polystyrene. Journal of Cellular Plastics, 2008, 44, 453-468.	2.4	18