Christian Ew Steinberg

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/3895650/christian-ew-steinberg-publications-by-citations.pdf$

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

184 papers 6,980 citations

43 h-index 80 g-index

185 ext. papers

7,888 ext. citations

5.7 avg, IF

5.66 L-index

#	Paper	IF	Citations
184	The oyster genome reveals stress adaptation and complexity of shell formation. <i>Nature</i> , 2012 , 490, 49-	·5 4 0.4	1464
183	Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1998 , 1425, 527-33	4	438
182	Dissolved humic substances Lecological driving forces from the individual to the ecosystem level?. <i>Freshwater Biology</i> , 2006 , 51, 1189-1210	3.1	201
181	Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). <i>Environmental Toxicology</i> , 1999 , 14, 89-95	4.2	161
180	Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. <i>Biogerontology</i> , 2011 , 12, 329-47	4.5	143
179	Applying the concept of partially ordered sets on the ranking of near-shore sediments by a battery of tests. <i>Journal of Chemical Information and Computer Sciences</i> , 2001 , 41, 918-25		131
178	Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin. <i>Photochemical and Photobiological Sciences</i> , 2004 , 3, 273-80	4.2	127
177	Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (Cav.) Trin. ex steud. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 846-852	3.8	127
176	Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography, 2002 , 47, 1702-1711	4.8	124
175	Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio). <i>Water Research</i> , 1997 , 31, 2918-2921	12.5	121
174	Ecology of Humic Substances in Freshwaters 2003,		115
173	Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. <i>Science of the Total Environment</i> , 2012 , 416, 501-6	10.2	109
172	Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. <i>Mechanisms of Ageing and Development</i> , 2009 , 130, 477-86	5.6	109
171	Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. <i>Biogerontology</i> , 2009 , 10, 565-78	4.5	107
170	Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. <i>Science of the Total Environment</i> , 2008 , 400, 142-61	10.2	99
169	Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation. <i>Environmental Science & Environmental Science & Env</i>	10.3	96
168	Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. <i>Environmental Pollution</i> , 2018 , 240, 1-9	9.3	90

(2004-2005)

167	CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. <i>Archives of Biochemistry and Biophysics</i> , 2005 , 438, 93-102	4.1	89
166	Humic substances. Part 2: Interactions with organisms. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 128-35	5.1	87
165	RELATIONSHIPS BETWEEN LITTORAL DIATOMS AND THEIR CHEMICAL ENVIRONMENT IN NORTHEASTERN GERMAN LAKES AND RIVERS1. <i>Journal of Phycology</i> , 2002 , 38, 66-89	3	87
164	Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. <i>Aquatic Toxicology</i> , 2003 , 62, 219-26	5.1	86
163	Effects of the cyanobacterial toxin microcystin-LR on detoxication enzymes in aquatic plants. <i>Environmental Toxicology</i> , 1999 , 14, 111-115	4.2	85
162	Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio. <i>Water Research</i> , 1995 , 29, 98	1-19285	83
161	Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. <i>Journal of Natural Products</i> , 2011 , 74, 1713-20	4.9	80
160	Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved?. <i>Mechanisms of Ageing and Development</i> , 2008 , 129, 611-3	5.6	77
159	Comparative study of microcystin-LR-induced behavioral changes of two fish species, Danio rerio and Leucaspius delineatus. <i>Environmental Toxicology</i> , 2004 , 19, 564-70	4.2	72
158	Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. <i>Reviews in Aquaculture</i> , 2020 , 12, 943-965	8.9	71
157	Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 2782-2788	3.8	68
156	Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. <i>Environmental Science & Environmental </i>	10.3	65
155	Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances. <i>Aquatic Toxicology</i> , 2001 , 54, 205-15	5.1	64
154	Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. <i>BMC Genomics</i> , 2009 , 10, 160	4.5	61
153	Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. <i>Aquatic Toxicology</i> , 2007 , 83, 93-103	5.1	61
152	Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. <i>Journal of Molecular Biology</i> , 2007 , 370, 1-13	6.5	61
151	Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). <i>Science of the Total Environment</i> , 2006 , 366, 673-81	10.2	56
150	Impact of natural organic matter (NOM) on freshwater amphipods. <i>Science of the Total Environment</i> , 2004 , 319, 115-21	10.2	52

149	Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). <i>Freshwater Biology</i> , 2001 , 46, 1-10	3.1	52
148	The longevity effect of tannic acid in Caenorhabditis elegans: Disposable Soma meets hormesis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010 , 65, 626-35	6.4	50
147	Toxicity of cadmium to Caenorhabditis elegans (Nematoda) in whole sediment and pore water the ambiguous role of organic matter. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2794-28	0³1 ^{.8}	50
146	Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behavior, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). <i>Aquatic Toxicology</i> , 2005 , 71, 49-59	5.1	48
145	Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. <i>Hydrobiologia</i> , 2010 , 652, 223-236	2.4	47
144	Growth and fertility of Caenorhabditis elegans (nematoda) in unpolluted freshwater sediments: Response to particle size distribution and organic content. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 2921-2925	3.8	46
143	Key site variables governing the functional characteristics of Dissolved Natural Organic Matter (DNOM) in Nordic forested catchments. <i>Aquatic Sciences</i> , 2004 , 66, 195-210	2.5	45
142	Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. <i>Chemosphere</i> , 2014 , 104, 212-20	8.4	43
141	Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). <i>Aquatic Sciences</i> , 2004 , 66, 239-245	2.5	41
140	Overlooked Risks of Biochars: Persistent Free Radicals trigger Neurotoxicity in Caenorhabditis elegans. <i>Environmental Science & Environmental Science</i>	10.3	40
139	Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. <i>Environmental Pollution</i> , 2017 , 227, 372-379	9.3	39
138	Enhanced growth and reproduction of Caenorhabditis elegans (Nematoda) in the presence of 4-nonylphenol. <i>Environmental Pollution</i> , 2002 , 120, 169-72	9.3	39
137	Effects of quantity, quality, and contact time of dissolved organic matter on bioconcentration of benzo[a]pyrene in the nematode Caenorhabditis elegans. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 459-465	3.8	39
136	Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 1004-14	5.1	37
135	Specific antioxidant reactions to oxidative stress promoted by natural organic matter in two amphipod species from Lake Baikal. <i>Environmental Toxicology</i> , 2006 , 21, 104-10	4.2	36
134	Modulation of longevity in Daphnia magna by food quality and simultaneous exposure to dissolved humic substances. <i>Limnologica</i> , 2010 , 40, 86-91	2	35
133	Environmental signals: synthetic humic substances act as xeno-estrogen and affect the thyroid system of Xenopus laevis. <i>Chemosphere</i> , 2005 , 61, 1183-8	8.4	34
132	Buffering Mechanisms in Acidic Mining Lakes 🖪 Model-Based Analysis. <i>Aquatic Geochemistry</i> , 2003 , 9, 343-359	1.7	34

(2012-2004)

131	Senoblotic substances such as PCB mixtures (Aroclor 1254) and 1B1 can influence swimming behavior and biotransformation activity (GST) of carp (Cyprinus carpio). <i>Environmental Toxicology</i> , 2004 , 19, 460-70	4.2	33
130	Dissolved humic substances initiate DNA-methylation in cladocerans. <i>Aquatic Toxicology</i> , 2011 , 105, 640) -3 .1	32
129	PCBs and PCDD/Fs in lake sediments of Grosser Arbersee, Bavarian Forest, South Germany. <i>Environmental Pollution</i> , 1997 , 95, 19-25	9.3	32
128	Impact of two different humic substances on selected coccal green algae and cyanobacteriachanges in growth and photosynthetic performance. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 335-46	5.1	31
127	Stress Ecology 2012 ,		30
126	Cadmium accumulation in zebrafish (Danio rerio) eggs is modulated by dissolved organic matter (DOM). <i>Aquatic Toxicology</i> , 2006 , 79, 185-91	5.1	30
125	Dissolved Humic Substances Can Directly Affect Freshwater Organisms. <i>Clean - Soil, Air, Water</i> , 2001 , 29, 34-40		29
124	The relative importance of different carbon structures in biochars to carbamazepine and bisphenol A sorption. <i>Journal of Hazardous Materials</i> , 2019 , 373, 106-114	12.8	28
123	Differential Sensitivity of a Coccal Green Algal and a Cyanobacterial Species to Dissolved Natural Organic Matter (NOM) (8 pp). <i>Environmental Science and Pollution Research</i> , 2007 , 14 Suppl 1, 11-8	5.1	28
122	UV-induced DNA damage in populations from clear and turbid alpine lakes. <i>Journal of Plankton Research</i> , 2014 , 36, 557-566	2.2	26
121	The non-target organism Caenorhabditis elegans withstands the impact of sulfamethoxazole. <i>Chemosphere</i> , 2013 , 93, 2373-80	8.4	24
120	Humic substances. Part 1: Dissolved humic substances (HS) in aquaculture and ornamental fish breeding. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 17-22	5.1	24
119	Cyanobacterial xenobiotics as evaluated by a Caenorhabditis elegans neurotoxicity screening test. <i>International Journal of Environmental Research and Public Health</i> , 2014 , 11, 4589-606	4.6	23
118	Hormonelike effects of humic substances on fish, amphibians, and invertebrates. <i>Environmental Toxicology</i> , 2004 , 19, 409-11	4.2	23
117	Towards a Quantitative Structure Activity Relationship (QSAR) of Dissolved Humic Substances as Detoxifying Agents in Freshwaters. <i>International Review of Hydrobiology</i> , 2000 , 85, 253-266	2.3	23
116	Aquatic Animal Nutrition 2018,		23
115	Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 146-54	5.1	22
114	Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans. <i>Frontiers in Genetics</i> , 2012 , 3, 48	4.5	22

113	Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. <i>Biochemical Journal</i> , 2011 , 435, 689-700	3.8	22
112	Cytochrome P450-dependent metabolism of PCB52 in the nematode Caenorhabditis elegans. <i>Archives of Biochemistry and Biophysics</i> , 2009 , 488, 60-8	4.1	22
111	Salinity, dissolved organic carbon and water hardness affect peracetic acid (PAA) degradation in aqueous solutions. <i>Aquacultural Engineering</i> , 2014 , 60, 35-40	3	21
110	Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems?. <i>Aquaculture</i> , 2010 , 306, 378-383	4.4	21
109	Neurotoxic evaluation of two organobromine model compounds and natural AOBr-containing surface water samples by a Caenorhabditis elegans test. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 104, 194-201	7	20
108	RNA/protein and RNA/DNA ratios determined by flow cytometry and their relationship to growth limitation of selected planktonic algae in culture. <i>European Journal of Phycology</i> , 2009 , 44, 297-308	2.2	20
107	Benzene polycarboxylic acid - A useful marker for condensed organic matter, but not for only pyrogenic black carbon. <i>Science of the Total Environment</i> , 2018 , 626, 660-667	10.2	19
106	Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 261-9	5.1	19
105	Natural organic matter differently modulates growth of two closely related coccal green algal species. <i>Environmental Science and Pollution Research</i> , 2007 , 14, 88-93	5.1	19
104	Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. <i>Scientific Reports</i> , 2017 , 7, 4487	4.9	17
103	Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum. <i>Chemosphere</i> , 2013 , 90, 2136-41	8.4	16
102	Hormesis and longevity with tannins: free of charge or cost-intensive?. <i>Chemosphere</i> , 2013 , 93, 1005-8	8.4	16
101	Enrichment of humic material with hydroxybenzene moieties intensifies its physiological effects on the nematode Caenorhabditis elegans. <i>Environmental Science & Environmental & Environmental</i>	10.3	16
100	Further Evidence that Humic Substances Have the Potential to Modulate the Reproduction of the Nematode Caenorhabditis elegans. <i>International Review of Hydrobiology</i> , 2002 , 87, 121	2.3	16
99	Neurotoxic action of microcystin-LR is reflected in the transcriptional stress response of Caenorhabditis elegans. <i>Chemico-Biological Interactions</i> , 2014 , 223, 51-7	5	15
98	Algal diets and natural xenobiotics impact energy allocation in cladocerans. II. Moina macrocopa and Moina micrura. <i>Limnologica</i> , 2014 , 44, 23-31	2	15
97	Leaf litter leachates have the potential to increase lifespan, body size, and offspring numbers in a clone of Moina macrocopa. <i>Chemosphere</i> , 2012 , 86, 883-90	8.4	15
96	Titration curves: a useful instrument for assessing the buffer systems of acidic mining waters. <i>Environmental Science and Pollution Research</i> , 2006 , 13, 215-24	5.1	15

(2009-2006)

95	Microbial Alkalinity Production to Prevent Reacidification of Neutralized Mining Lakes. <i>Mine Water and the Environment</i> , 2006 , 25, 204-213	2.4	15
94	Effects of tributyltin chloride (TBTCl) on detoxication enzymes in aquatic plants. <i>Environmental Toxicology</i> , 2000 , 15, 225-233	4.2	15
93	Glutathione S-transferase activity in aquatic macrophytes with emphasis on habitat dependence. <i>Ecotoxicology and Environmental Safety</i> , 1998 , 40, 226-33	7	15
92	Can the properties of engineered nanoparticles be indicative of their functions and effects in plants?. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 205, 111128	7	15
91	Algal diets and natural xenobiotics impact energy allocation in cladocerans. I. Daphnia magna. <i>Limnologica</i> , 2013 , 43, 434-440	2	14
90	Does quinone or phenol enrichment of humic substances alter the primary compound from a non-algicidal to an algicidal preparation?. <i>Chemosphere</i> , 2012 , 87, 1193-200	8.4	14
89	Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 14124-37	5.1	13
88	Exposure to humic material modulates life history traits of the cladocerans Moina macrocopa and Moina micrura. <i>Chemistry and Ecology</i> , 2010 , 26, 135-143	2.3	13
87	Influence of a Xenobiotic Mixture (PCB and TBT) Compared to Single Substances on Swimming Behavior or Reproduction of Daphnia magna. <i>Clean - Soil, Air, Water</i> , 2005 , 33, 287-300		13
86	Temporal pattern in swimming activity of two fish species (Danio rerio and Leucaspius delineatus) under chemical stress conditions. <i>Biological Rhythm Research</i> , 2005 , 36, 263-276	0.8	11
85	The contrasting role of minerals in biochars in bisphenol A and sulfamethoxazole sorption. <i>Chemosphere</i> , 2021 , 264, 128490	8.4	11
84	Organic carbon source in formulated sediments influences life traits and gene expression of Caenorhabditis elegans. <i>Ecotoxicology</i> , 2012 , 21, 557-68	2.9	10
83	Aerobic phosphorus release from shallow lake sediments. <i>Science of the Total Environment</i> , 2011 , 409, 4640-1; author reply 4642-3	10.2	10
82	In vivo laser-induced fluorescence detection of pyrene in nematodes and determination of pyrene binding constants for humic substances by fluorescence quenching and bioconcentration experiments. <i>Journal of Environmental Monitoring</i> , 2000 , 2, 145-9		10
81	Antiandrogenic activity of humic substances. Science of the Total Environment, 2012, 432, 93-6	10.2	9
80	Natural Marine and Synthetic Xenobiotics Get on Nematode's Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans. <i>Marine Drugs</i> , 2015 , 13, 2785-812	6	9
79	Environmental Stresses: Ecological Driving Force and Key Player in Evolution 2012 , 369-386		9
78	Can acclimation of amphipods change their antioxidative response?. <i>Aquatic Ecology</i> , 2009 , 43, 1041-10	45 .9	9

77	Combined effects of the fungicide propiconazole and agricultural runoff sediments on the aquatic bryophyte Vesicularia dubyana. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2285-90	3.8	8
76	Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. <i>Environmental Science & Environmental Scien</i>	15820	8
75	Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. <i>Scientific Reports</i> , 2021 , 11, 174	4.9	8
74	Two organobromines trigger lifespan, growth, reproductive and transcriptional changes in Caenorhabditis elegans. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 10419-31	5.1	7
73	Selected coccal green algae are not affected by the humic substance Huminfeed in term of growth or photosynthetic performance. <i>Hydrobiologia</i> , 2012 , 684, 215-224	2.4	7
72	Humic substances in the environment with an emphasis on freshwater systems. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 15-6	5.1	7
71	EXOGENOUS ALKALINE PHOSPHATASE ACTIVITY OF ALGAL CELLS DETERMINED BY FLUORIMETRIC AND FLOW CYTOMETRIC DETECTION OF SOLUBLE ENZYME PRODUCTS (4-METHYL-UMBELLIFERONE, FLUORESCEIN)1. <i>Journal of Phycology</i> , 2005 , 41, 993-999	3	7
70	Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids. <i>Environmental Pollution</i> , 2020 , 260, 113977	9.3	6
69	The Influence of Tributyltin Chloride and Polychlorinated Biphenyls on Swimming Behavior, Body Growth, Reproduction, and Activity of Biotransformation Enzymes in Daphnia magna. <i>Journal of Freshwater Ecology</i> , 2006 , 21, 109-120	1.4	6
68	Ambiguous Ecological Control by Dissolved Humic Matter (DHM) and Natural Organic Matter (NOM): Trade-offs between Specific and Non-specific Effects. <i>Clean - Soil, Air, Water</i> , 2001 , 29, 399		6
67	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. <i>Science of the Total Environment</i> , 2021 , 757, 143807	10.2	6
66	The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances. <i>Frontiers in Genetics</i> , 2012 , 3, 50	4.5	5
65	Organic matter protection by kaolinite over bio-decomposition as suggested by lignin and solvent-extractable lipid molecular markers. <i>Science of the Total Environment</i> , 2019 , 647, 570-576	10.2	4
64	Culture of the cladoceran Moina macrocopa: Mortality associated with flagellate infection. <i>Aquaculture</i> , 2013 , 416-417, 374-379	4.4	4
63	Multiple Stressors as Environmental Realism: Synergism or Antagonism 2012 , 295-309		4
62	ESPREs Total Environment. Environmental Science and Pollution Research, 2007, 14 Suppl 1, 1-2	5.1	4
61	Protection of extractable lipid and lignin: Differences in undisturbed and cultivated soils detected by molecular markers. <i>Chemosphere</i> , 2018 , 213, 314-322	8.4	4
60	Low concentrations of dibromoacetic acid and N-nitrosodimethylamine induce several stimulatory effects in the invertebrate model Caenorhabditis elegans. <i>Chemosphere</i> , 2015 , 124, 122-8	8.4	3

(2012-2012)

59	Humic Substances Delay Aging of the Photosynthetic Apparatus of Chara hispida. <i>Journal of Phycology</i> , 2012 , 48, 1522-9	3	3
58	Arms Race Between Plants and Animals: Biotransformation System 2012 , 61-106		3
57	Transcript expression patterns illuminate the mechanistic background of hormesis in caenorhabditis elegans maupas. <i>Dose-Response</i> , 2013 , 11, 558-76	2.3	3
56	The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. <i>Photosynthesis Research</i> , 2018 , 137, 403-420	3.7	3
55	NOM as Natural Xenobiotics. ACS Symposium Series, 2014 , 115-144	0.4	2
54	The Potential of Stress Response: Ecological Transcriptomics 2012 , 161-211		2
53	Fixation of manganese and iron in freshwater sediments through electrochemically initiated processes I: Principles and laboratory studies. <i>Aquatic Sciences</i> , 2004 , 66, 95-102	2.5	2
52	. Environmental Toxicology and Chemistry, 1999 , 18, 459	3.8	2
51	Fulvic acid accelerates hatching and stimulates antioxidative protection and the innate immune response in zebrafish larvae. <i>Science of the Total Environment</i> , 2021 , 796, 148780	10.2	2
50	Plant Polyphenols 2014 , 87-96.e17		1
50 49	Plant Polyphenols 2014 , 87-96.e17 Activation of Oxygen: Multipurpose Tool 2012 , 7-45		1
49	Activation of Oxygen: Multipurpose Tool 2012 , 7-45		1
49	Activation of Oxygen: Multipurpose Tool 2012 , 7-45 Regulatory Impacts of Humic Substances in Lakes153-196	2.9	1
49 48 47	Activation of Oxygen: Multipurpose Tool 2012, 7-45 Regulatory Impacts of Humic Substances in Lakes153-196 Protein Sparing by Lipids learning from Wild Conspecifics 2022, 599-632 Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation	2.9	1 1
49 48 47 46	Activation of Oxygen: Multipurpose Tool 2012, 7-45 Regulatory Impacts of Humic Substances in Lakes153-196 Protein Sparing by Lipids Learning from Wild Conspecifics 12022, 599-632 Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation Period with Low-Strength and Low C/N Ratio Wastewater. Processes, 2021, 9, 1290 Dietary supplements and pro-opiomelanocortin in Siniperca chuatsilletter to the Editor.		1 1 1
49 48 47 46 45	Activation of Oxygen: Multipurpose Tool 2012, 7-45 Regulatory Impacts of Humic Substances in Lakes153-196 Protein Sparing by Lipids Dearning from Wild Conspecifics 2022, 599-632 Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation Period with Low-Strength and Low C/N Ratio Wastewater. Processes, 2021, 9, 1290 Dietary supplements and pro-opiomelanocortin in Siniperca chuatsi Detter to the Editor. Aquaculture Research, 2021, 52, 5918 Dietary Restriction, Starvation, Compensatory Growth Short-Term Fasting Does Not Kill You: It		1 1 1 1 1

41	Essential Fatty Acids E ueling Versus Controlling 2022 , 673-721		О
40	LC-PUFAs in Reproduction and BehaviorGood CopBad Cop?[2022 , 753-772		O
39	Nonstarch Polysaccharides Neither Sweet Nor Gluey Adverse? 12022, 509-529		O
38	Inherent Minerals Facilitated Bisphenol A Sorption by Biochar: A Key Force by Complexation. <i>ACS ES&T Water</i> , 2022 , 2, 184-194		O
37	Vitamin E K eep Stress Away![2022 , 927-949		O
36	Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure. <i>Processes</i> , 2022 , 10, 444	2.9	O
35	Modification of the chemically induced inflammation assay reveals the Janus face of a phenol rich fulvic acid <i>Scientific Reports</i> , 2022 , 12, 5886	4.9	О
34	Adsorbable organic bromine compounds (AOBr) in aquatic samples: a nematode-based toxicogenomic assessment of the exposure hazard. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 14862-73	5.1	
33	Why a Small Worm Is Not Crazy 2012 , 1-6		
32	Heat Shock Proteins: The Minimal, but Universal, Stress Proteome 2012 , 107-130		
32	Heat Shock Proteins: The Minimal, but Universal, Stress Proteome 2012 , 107-130 Not All Is in the Genes 2012 , 213-240		
31	Not All Is in the Genes 2012 , 213-240	2.5	
31	Not All Is in the Genes 2012 , 213-240 Longevity: Risky Shift in Population Structure? 2012 , 327-343 Fixation of manganese and iron in freshwater sediments through electrochemically initiated	2.5	
31 30 29	Not All Is in the Genes 2012 , 213-240 Longevity: Risky Shift in Population Structure? 2012 , 327-343 Fixation of manganese and iron in freshwater sediments through electrochemically initiated processes II: Process optimization. <i>Aquatic Sciences</i> , 2006 , 68, 443-452 Characterization of acidic mining lakes by titration curves. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical</i>	2.5	
31 30 29 28	Not All Is in the Genes 2012 , 213-240 Longevity: Risky Shift in Population Structure? 2012 , 327-343 Fixation of manganese and iron in freshwater sediments through electrochemically initiated processes II: Process optimization. <i>Aquatic Sciences</i> , 2006 , 68, 443-452 Characterization of acidic mining lakes by titration curves. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , 2006 , 29, 1356-1358	2.5	
31 30 29 28	Not All Is in the Genes 2012, 213-240 Longevity: Risky Shift in Population Structure? 2012, 327-343 Fixation of manganese and iron in freshwater sediments through electrochemically initiated processes II: Process optimization. Aquatic Sciences, 2006, 68, 443-452 Characterization of acidic mining lakes by titration curves. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2006, 29, 1356-1358 Interaktionen von Huminstoffen mit Organismen in Binnengew\(\text{Bsern 2004, 1-32} \) Biogeochemische Regulation in limnischen \(\text{Bosystemen: Zur \(\text{Bologischen Bedeutung von} \)	2.5	

(2022-2022)

Aquatic Animal Nutrition: Organic Macro- and Micronutrients Do Blind Men and Their Elephant 23 Get Wet Feet? 2022, 1-10 Oligosaccharides weet or Healthy Promises 2022, 455-472 22 Vitamin B Complex Do These Compounds Keep Veterinarians Away? 2022, 839-866 21 Lipids The Greasy, Unhealthy Stuff 2022, 531-582 20 Peptides or Amino Acids? The Smaller, the Better? 2022, 61-77 19 Sulfur Amino Acids Much More than Easy Fuel 2022, 163-192 18 Glucose Intolerance life Real Luxury? 2022, 329-348 17 Glucose Homeostasis Life Little Luxury Balanced 2022, 303-328 16 Fatty Acids Eucling Versus Steering (2022, 633-672) 15 Protein Requirement Dnly Meat Makes You Strong 2022, 11-41 14 Nonprotein Amino Acids Euel at All? 2022, 243-261 13 Regulatory Potential of Carbohydrates Little Luxury Controls 2022, 435-454 12 TaurineControlling Rather than Fueling (2022, 223-242) 11 Nucleotides Dnly for Fitness Fans? 2022, 961-989 10 Utilization of Proteinaceous NutrientsBecoming Strong with Meat[2022, 43-60 9 The Versatile Amino Acid: Tryptophan More Controlling than Fueling 12022, 117-137 EnzymesDigestive Assistance from AliensD022, 991-1036 Vitamin Can Apple a Day Keeps the Veterinarian Away 2022, 867-908

- Basic Amino Acids and Prolines Again: Much More than Easy Fuel **2022**, 193-221
- 4 Gewßserbelastungen durch organische Stoffe **2000**, 93-272
- 3 Chrononutrition The Clock Makes Good Food **2018**, 289-331
- Transgenerational Effects Wour Offspring Will Become What You Eatl 2018, 333-430
- The Sorption of Sulfamethoxazole by Aliphatic and Aromatic Carbons from Lignocellulose Pyrolysis.

 Agronomy, **2022**, 12, 476

3.6