Chun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895408/publications.pdf

Version: 2024-02-01

194 papers 30,813 citations

80 h-index 4323 173 g-index

204 all docs

204 docs citations

204 times ranked 32992 citing authors

#	Article	IF	Citations
1	Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008, 130, 5856-5857.	6.6	3,085
2	Self-Assembled Graphene Hydrogel <i>via</i> a One-Step Hydrothermal Process. ACS Nano, 2010, 4, 4324-4330.	7.3	2,999
3	An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.	5.4	1,785
4	Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials, 2011, 23, 1089-1115.	11.1	973
5	Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1555-1558.	2.3	802
6	Three-dimensional graphene architectures. Nanoscale, 2012, 4, 5549.	2.8	754
7	Graphene based catalysts. Energy and Environmental Science, 2012, 5, 8848.	15.6	726
8	Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 2009, 47, 3538-3543.	5.4	671
9	A pH-sensitive graphene oxide composite hydrogel. Chemical Communications, 2010, 46, 2376.	2.2	617
10	Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 2009, 38, 2397.	18.7	615
11	On the Gelation of Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 5545-5551.	1.5	603
12	Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 2009, , 1667.	2.2	569
13	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	1.6	559
14	Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) lons. Journal of the American Chemical Society, 2009, 131, 13490-13497.	6.6	497
15	High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.	5.4	443
16	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	1.6	432
17	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	11.1	409
18	Highâ€Performance NO ₂ Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013, 25, 766-771.	11.1	404

#	Article	IF	CITATIONS
19	Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Advanced Materials, 2014, 26, 4789-4793.	11.1	354
20	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	2.1	316
21	A Sensitive Colorimetric and Fluorescent Probe Based on a Polythiophene Derivative for the Detection of ATP. Angewandte Chemie - International Edition, 2005, 44, 6371-6374.	7.2	310
22	Ultrahighâ€Conductivity Polymer Hydrogels with Arbitrary Structures. Advanced Materials, 2017, 29, 1700974.	11.1	290
23	Graphene Materials for Electrochemical Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1244-1253.	2.1	288
24	Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications, 2010, 46, 4740.	2.2	287
25	High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Materials, 2011, 26, 9-15.	2.9	283
26	Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry, 2011, 21, 18653.	6.7	283
27	Functional Gels Based on Chemically Modified Graphenes. Advanced Materials, 2014, 26, 3992-4012.	11.1	276
28	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	1.3	266
29	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	3.7	251
30	Electrochemical Deposition of Polypyrrole/Sulfonated Graphene Composite Films. Journal of Physical Chemistry C, 2010, 114, 22783-22789.	1.5	236
31	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	8.8	230
32	A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chemical Communications, 2011, 47, 4962.	2.2	225
33	Self-Assembly of Supramolecular Chiral Insulated Molecular Wire. Journal of the American Chemical Society, 2005, 127, 4548-4549.	6.6	212
34	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nature Nanotechnology, 2021, 16, 811-819.	15.6	193
35	Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry, 2011, 21, 7376.	6.7	187
36	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	11.1	182

#	Article	IF	CITATIONS
37	Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics, 2012, 14, 7360.	1.3	161
38	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780.	2.8	160
39	Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nature Communications, 2019, 10, 1512.	5.8	160
40	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. Advanced Materials, 2015, 27, 6708-6713.	11.1	157
41	All-region-applicable, continuous power supply of graphene oxide composite. Energy and Environmental Science, 2019, 12, 1848-1856.	15.6	150
42	Size Fractionation of Graphene Oxide Sheets via Filtration through Trackâ€Etched Membranes. Advanced Materials, 2015, 27, 3654-3660.	11.1	149
43	High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy, 2018, 46, 415-422.	8.2	149
44	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	7.3	148
45	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	2.8	146
46	Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer, 2011, 52, 5567-5572.	1.8	145
47	An alumina stabilized ZnO–graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale, 2014, 6, 11419-11424.	2.8	142
48	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	15.6	142
49	A Turn-on Fluorescent Sensor for Pyrophosphate Based on the Disassembly of Cu ²⁺ -Mediated Perylene Diimide Aggregates. ACS Applied Materials & Samp; Interfaces, 2012, 4, 614-618.	4.0	139
50	Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry, 2012, 22, 12810.	6.7	138
51	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	5.2	138
52	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. Advanced Functional Materials, 2020, 30, 1906996.	7.8	138
53	Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 7360.	5.2	135
54	High-Strength Conducting Polymers Prepared by Electrochemical Polymerization in Boron Trifluoride Diethyl Etherate Solution. Advanced Materials, 1999, 11, 1145-1146.	11,1	129

#	Article	IF	CITATIONS
55	Electrochemical and Optical Properties of the Poly(3,4-ethylenedioxythiophene) Film Electropolymerized in an Aqueous Sodium Dodecyl Sulfate and Lithium Tetrafluoroborate Medium. Macromolecules, 2004, 37, 2411-2416.	2.2	129
56	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. Advanced Materials, 2020, 32, e1905875.	11.1	123
57	Bifunctional Graphene/ <i>γ</i> à€Fe ₂ O ₃ Hybrid Aerogels with Double Nanocrystalline Networks for Enzyme Immobilization. Small, 2013, 9, 2331-2340.	5.2	121
58	A Microstructured Graphene/Poly(<i>N</i> â€isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. Angewandte Chemie - International Edition, 2018, 57, 16343-16347.	7.2	121
59	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	15.6	119
60	\hat{l}^2 -1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chemical Communications, 2005, , 4383.	2.2	116
61	Solution-Processed PEDOT:PSS/Graphene Composites as the Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3587-3593.	4.0	115
62	‴Click chemistry' on polysaccharides: a convenient, general, and monitorable approach to develop (1→3)-β-d-glucans with various functional appendages. Carbohydrate Research, 2006, 341, 35-40.	1.1	111
63	Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering. Chemistry of Materials, 2007, 19, 3433-3440.	3.2	110
64	A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9609-9615.	5.2	109
65	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	11.1	108
66	Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery. Nanoscale, 2015, 7, 5292-5298.	2.8	102
67	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	5.2	101
68	Colorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine. Chemical Communications, 2011, 47, 7431.	2.2	99
69	Circularly Polarized Luminescence from Supramolecular Chiral Complexes of Achiral Conjugated Polymers and a Neutral Polysaccharide. Chemistry Letters, 2009, 38, 254-255.	0.7	90
70	Composite nanofibers of conducting polymers and hydrophobic insulating polymers: Preparation and sensing applications. Polymer, 2009, 50, 3292-3301.	1.8	88
71	Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale, 2013, 5, 7361.	2.8	87
72	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87

#	Article	IF	Citations
73	A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. Journal of Materials Chemistry A, 2016, 4, 16213-16218.	5.2	86
74	Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chemical Communications, 2009, , 5886.	2.2	85
75	Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. Journal of Materials Chemistry, 2011, 21, 7154.	6.7	85
76	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3895-3901.	4.0	85
77	Solution-processable graphene nanomeshes with controlled pore structures. Scientific Reports, 2013, 3, 1996.	1.6	83
78	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie - International Edition, 2020, 59, 14541-14549.	7.2	83
79	Colorimetric Assays for Acetylcholinesterase Activity and Inhibitor Screening Based on the Disassemblyâ Assembly of a Water-Soluble Polythiophene Derivative. ACS Applied Materials & Interfaces, 2011, 3, 1306-1310.	4.0	81
80	Polythiophene-Based Optical Sensors for Small Molecules. ACS Applied Materials & Description (2013, 5, 4503-4510.	4.0	81
81	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	5.2	79
82	Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer, 2006, 47, 1778-1784.	1.8	78
83	Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon, 2016, 110, 34-40.	5.4	77
84	A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, , 4696.	2.2	74
85	Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17040-17047.	5.2	74
86	\hat{l}^2 -1,3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures. Chemical Communications, 2005, , 4655.	2.2	73
87	Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer, 2007, 48, 4015-4020.	1.8	73
88	1D Arrangement of Au Nanoparticles by the Helical Structure of Schizophyllan: A Unique Encounter of a Natural Product with Inorganic Compounds. Angewandte Chemie - International Edition, 2005, 44, 2030-2033.	7.2	72
89	Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. Journal of Materials Chemistry A, 2018, 6, 19563-19569.	5.2	72
90	Carbon nanotube-based fluorescence sensors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 20-34.	5.6	71

#	Article	IF	Citations
91	Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chemical Communications, 2006, , 1655.	2.2	69
92	Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy, 2020, 67, 104238.	8.2	68
93	Rapid nitroaromatic compounds sensing based on oligopyrene. Sensors and Actuators B: Chemical, 2008, 130, 777-782.	4.0	66
94	Preparation of Highly Conductive Goldâ^'Poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes. Journal of Physical Chemistry C, 2007, 111, 5926-5931.	1.5	65
95	A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale, 2017, 9, 17465-17470.	2.8	65
96	Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nature Communications, 2019, 10, 2855.	5 . 8	65
97	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591.	10.2	64
98	Thin polypyrrole films prepared by chemical oxidative polymerization. Journal of Applied Polymer Science, 1998, 70, 2169-2172.	1.3	61
99	Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochimica Acta, 2011, 56, 10737-10743.	2.6	60
100	Composite organogels of graphene and activated carbon for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9196.	5.2	60
101	Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry, 2012, 22, 8438.	6.7	59
102	Optically Active Supramolecular Complex Formed by Ionic Self-Assembly of Cationic Perylenediimide Derivative and Adenosine Triphosphate. Langmuir, 2008, 24, 43-48.	1.6	55
103	A water-soluble cationic oligopyrene derivative: Spectroscopic studies and sensing applications. Sensors and Actuators B: Chemical, 2009, 138, 563-571.	4.0	55
104	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	5 . 2	54
105	2D perovskite microsheets for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5353-5358.	2.7	54
106	Trace Level Co–N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 4637-4644.	5 . 5	53
107	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-lon Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. ACS Nano, 2019, 13, 9161-9170.	7.3	53
108	Optically Active Supramolecular Complexes of Water-Soluble Achiral Polythiophenes and Folic Acid: Spectroscopic Studies and Sensing Applications. Langmuir, 2008, 24, 12829-12835.	1.6	51

#	Article	IF	Citations
109	Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chemical Science, 2019, 10, 1244-1253.	3.7	51
110	Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology, 2006, 17, 4936-4940.	1.3	50
111	Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon, 2020, 158, 568-579.	5.4	50
112	A General Route to Robust Nacre-Like Graphene Oxide Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15010-15016.	4.0	48
113	Unexpected Chiroptical Inversion Observed for Supramolecular Complexes Formed between an Achiral Polythiophene and ATP. Chemistry - an Asian Journal, 2006, 1, 95-101.	1.7	47
114	Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon, 2017, 124, 263-270.	5.4	46
115	Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion. Nanoscale, 2018, 10, 17512-17519.	2.8	46
116	Chemically modified graphene films with tunable negative Poisson's ratios. Nature Communications, 2019, 10, 2446.	5.8	46
117	Electrostatic Layer-by-Layer Assembly of Poly(amido amine) Dendrimer/Conducting Sulfonated Polyaniline:  Structure and Properties of Multilayer Films. Macromolecules, 2003, 36, 9957-9965.	2.2	45
118	\hat{l}^2 -1,3-Glucan Polysaccharide (Schizophyllan) Acting as a One-Dimensional Host for Creating Supramolecular Dye Assemblies. Organic Letters, 2006, 8, 5533-5536.	2.4	45
119	Suppressing the Selfâ€Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Advanced Materials Interfaces, 2018, 5, 1701547.	1.9	42
120	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Advances, 2012, 2, 2154.	1.7	40
121	Mesoporous Co–B–N–H nanowires: superior catalysts for decomposition of hydrous hydrazine to generate hydrogen. Catalysis Science and Technology, 2014, 4, 3168.	2.1	40
122	Graphene-based electrochemical capacitors with integrated high-performance. Materials Today Energy, 2017, 6, 181-188.	2.5	40
123	Analyte-induced aggregation of conjugated polyelectrolytes: role of the charged moieties and its sensing application. Chemical Communications, 2010, 46, 5094.	2.2	39
124	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
125	Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 19538-19545.	1.3	37
126	Aligned three-dimensional microstructures of conducting polymer composites. Polymer, 2007, 48, 5259-5267.	1.8	36

#	Article	IF	Citations
127	Polypyrrole actuators with inverse opal structures. Journal of Materials Chemistry, 2009, 19, 1653.	6.7	36
128	Molecular Recognition Capabilities of a Nucleolipid Amphiphile (3â€~,5â€~-Distearoyl)-2â€~-Deoxythymidine to Adenosine at the Air/Water Interface and Langmuirâ°'Blodgett Films Studied by Molecular Spectroscopy. Langmuir, 2000, 16, 7701-7707.	1.6	35
129	Schizophyllan Can Act as a One-dimensional Host to Construct Poly(diacetylene) Nanofibers. Chemistry Letters, 2005, 34, 40-41.	0.7	34
130	Electrochemical Fabrication of a Memory Device Based on Conducting Polymer Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 18392-18396.	1.5	34
131	Solution electrochemical approach to functionalized graphene: History, progress and challenges. Carbon, 2018, 140, 41-56.	5.4	34
132	PEDOT: Fundamentals and Its Nanocomposites for Energy Storage. Chinese Journal of Polymer Science (English Edition), 2020, 38, 435-448.	2.0	34
133	Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach. Energy and Environmental Science, 2022, 15, 1131-1143.	15.6	34
134	Polyaniline superstructures created by a templating effect of organogels. Chemical Communications, 2004, , 2350.	2.2	32
135	Layer-by-Layer Deposited Multilayer Films of Oligo(pyrenebutyric acid) and a Perylene Diimide Derivative:  Structure and Photovoltaic Properties. Langmuir, 2008, 24, 4380-4387.	1.6	32
136	Disassembly of conjugated polyelectrolyte aggregates and their application for colorimetric detection of surfactants in water. Chemical Communications, 2010, 46, 8639.	2.2	32
137	A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation. Physical Chemistry Chemical Physics, 2014, 16, 10142.	1.3	32
138	Water-soluble Polythiophene as an Optical Probe for Detection of the Helicity and Conformational Transition in Polysaccharides. Chemistry Letters, 2005, 34, 1354-1355.	0.7	30
139	A Largeâ€Scale Graphene–Bimetal Film Electrode with an Ultrahigh Mass Catalytic Activity for Durable Water Splitting. Advanced Energy Materials, 2018, 8, 1800403.	10.2	29
140	Schizophyllan Acts as a One-dimensional Host to Accommodate 5,10,15,20-Tetrakis(4-carboxyphenyl)porphyrinatozinc Acetate to Produce Its Fibrous Superstructure. Chemistry Letters, 2005, 34, 1118-1119.	0.7	28
141	Sunlightâ€Driven Water Transport via a Reconfigurable Pump. Angewandte Chemie - International Edition, 2018, 57, 15435-15440.	7.2	27
142	Polypyrrole-carbon fiber composite film prepared by chemical oxidative polymerization of pyrrole. Journal of Applied Polymer Science, 1997, 64, 2149-2154.	1.3	25
143	Self-assembled organogels formed by monoalkyl derivatives of oxamide. Chemical Communications, 2000, , 2091-2092.	2.2	25
144	Protoporphyrin IX Zinc(II) Organization at the Air/Water Interface and Its Langmuirâ^Blodgett Films. Langmuir, 2003, 19, 779-784.	1.6	25

#	Article	IF	Citations
145	Disassembly-driven colorimetric and fluorescent sensor for anionic surfactants in water based on a conjugated polyelectrolyte/dye complex. Soft Matter, 2011, 7, 6873.	1.2	25
146	Poly(diacetylene)-nanofibers can be fabricated through photo-irradiation using natural polysaccharide schizophyllan as a one-dimensional mold. Organic and Biomolecular Chemistry, 2005, 3, 4321.	1.5	24
147	Electrosynthesis of free-standing poly(para-phenylene) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid on stainless steel electrode. Journal of Applied Polymer Science, 2002, 83, 2462-2466.	1.3	23
148	l̂²-1,3-Glucan (Schyzophyllan) Can Act as a One-Dimensional Host for Creating Chirally Twisted Poly(p-phenylene Ethynylene). Supramolecular Chemistry, 2007, 19, 107-113.	1.5	23
149	FT-SERS Studies on Molecular Recognition Capabilities of Monolayers of Novel Nucleolipid Amphiphiles. Langmuir, 2000, 16, 3937-3940.	1.6	22
150	Water-soluble Poly(3,4-ethylenedioxythiophene) Nanocomposites Created by a Templating Effect of \hat{l}^2 -1,3-Glucan Schizophyllan. Chemistry Letters, 2005, 34, 1532-1533.	0.7	20
151	Organic dispersions of graphene oxide with arbitrary concentrations and improved chemical stability. Chemical Communications, 2017, 53, 11005-11007.	2.2	20
152	Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5812-5818.	4.0	20
153	Structural integrity versus lateral size: Enhancing graphene-based film materials by reducing planar defects rather than flake boundary. Carbon, 2018, 139, 216-225.	5.4	20
154	Electrosynthesis of poly(3,4-ethylenedioxythiophene) microcups in the aqueous solution of LiClO4 and tri(ethylene glycol). Polymer, 2006, 47, 4953-4958.	1.8	19
155	Facile design of poly(3,4-ethylenedioxythiophene)-tris(2,2′-bipyridine)ruthenium (II) composite film suitable for a three-dimensional light-harvesting system. Tetrahedron, 2004, 60, 8037-8041.	1.0	18
156	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	5.4	18
157	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie, 2020, 132, 14649-14657.	1.6	17
158	Studies on Mixed Monolayers and Langmuir–Blodgett Films of Schiff-Base Complex Cu(SBC18)2 and Calix[4]arene. Journal of Colloid and Interface Science, 2001, 240, 480-486.	5.0	16
159	Effect of Counterions on the Organized Structure of Cu2+-Coordinated Bilayer Membranes Formed by Monoalkyl Derivatives of Ethylenediamine. Langmuir, 2002, 18, 575-580.	1.6	16
160	Structure Control on Photodimerization of Uracil and Thymine Moieties in Nucleolipid Langmuirâ'Blodgett Films by the Molecular Recognition Effect at the Air/Water Interface. Langmuir, 2001, 17, 2228-2234.	1.6	15
161	Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates. Journal of Adhesion Science and Technology, 2008, 22, 1819-1839.	1.4	15
162	Monodisperse amorphous CuB ₂₃ alloy short nanotubes: novel efficient catalysts for Heck coupling of inactivated alkyl halides and alkenes. RSC Advances, 2014, 4, 45838-45843.	1.7	15

#	Article	IF	CITATIONS
163	"Pottery―of Porous Graphene Materials. Advanced Electronic Materials, 2015, 1, 1500004.	2.6	15
164	Layer-by-layer deposited multilayer films of water soluble polythiophene derivative and gold nanoparticles exhibiting photoresponsive properties. Nanotechnology, 2007, 18, 185707.	1.3	14
165	Microstructure and Ion Exchange in Stearic Acid Langmuir–Blodgett Films Studied by Fourier Transform Infrared-Attenuated Total Reflection Spectroscopy. Journal of Colloid and Interface Science, 2001, 235, 59-65.	5.0	13
166	Flexible Sandwich Photodetectors Based on Thick Polythiophene Films. Journal of Physical Chemistry C, 2009, 113, 7411-7415.	1.5	13
167	Functional Composite Materials Based on Chemically Converted Graphene (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1088-1088.	11.1	13
168	Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. European Polymer Journal, 2019, 112, 487-492.	2.6	13
169	Photoresponsive properties of multilayers of conductive polymer and CdSe nanoparticles. Solar Energy Materials and Solar Cells, 2008, 92, 543-549.	3.0	11
170	Li ₉ V ₃ (P ₂ O ₇) ₃ (PO ₄) ₂ nanotubes fabricated by a simple molten salt approach with excellent cycling stability and enhanced rate capability in lithium-ion batteries. RSC Advances, 2015, 5, 243-247.	1.7	11
171	Graphene Ionogel Ultraâ€Fast Filter Supercapacitor with 4ÂV Workable Window and 150 °C Operable Temperature. Small, 2022, 18, e2200916.	5.2	11
172	Spectroscopic studies on molecular recognition capabilities of a nucleolipid bearing thymine headgroup to adenosine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1587-1593.	2.0	10
173	Intrinsic mechanical properties of graphene oxide films: Strain characterization and the gripping effects. Carbon, 2017, 118, 467-474.	5.4	10
174	Sunlightâ€Driven Water Transport via a Reconfigurable Pump. Angewandte Chemie, 2018, 130, 15661-15666.	1.6	10
175	Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane. Science China Materials, 2020, 63, 1948-1956.	3.5	10
176	Vertically Oriented MXene Bridging the Frequency Response and Capacity Density Gap for ACâ€Filtering Pseudocapacitors. Advanced Functional Materials, 2022, 32, .	7.8	10
177	Pyrenyl Excimers Induced by the Crystallization of POSS Moieties: Spectroscopic Studies and Sensing Applications. ChemPhysChem, 2008, 9, 1908-1913.	1.0	9
178	Biomimetic Antigravity Water Transport and Remote Harvesting Powered by Sunlight. Global Challenges, 2020, 4, 2000043.	1.8	9
179	An intelligent film actuator with multi-level deformation behaviour. Nanoscale Horizons, 2020, 5, 1226-1232.	4.1	9
180	A Microstructured Graphene/Poly(<i>N</i> à€isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. Angewandte Chemie, 2018, 130, 16581-16585.	1.6	8

#	Article	IF	CITATIONS
181	Poly(ethylene glycol)s catalyzed two-phase dehydrochlorination of poly(vinyl chloride) with potassium hydroxide. Journal of Applied Polymer Science, 1998, 70, 2463-2469.	1.3	6
182	Fourier transform surface-enhanced Raman scattering of single-layer nucleolipid Langmuir–Blodgett films on silver island film substrates. Journal of Colloid and Interface Science, 2004, 270, 309-314.	5.0	6
183	High-strength metallic plastic sheet prepared by electrochemical polymerization of thiophene on stainless steel. Journal of Applied Polymer Science, 1998, 68, 1027-1029.	1.3	5
184	Control on the organized structure of monoalkylethylenediamine copper(ii) coordinated bilayer membranes by counter ions. Chemical Communications, 2001, , 1440-1441.	2.2	5
185	Effects of Cl adatom on Na-Decorated graphene. Journal Physics D: Applied Physics, 2015, 48, 225304.	1.3	4
186	Î ² -1,3-Glucan Polysaccharides as Novel One-Dimensional Hosts for DNA/RNA, Conjugated Polymers and Nanoparticles. ChemInform, 2005, 36, no.	0.1	3
187	Self-assembly of insulated molecular wires of a watersoluble cationic PPV and anionic dendrons. Science Bulletin, 2009, 54, 2451-2456.	1.7	3
188	Vibrational Spectroscopic Studies of Molybdena Dispersed on Ceria Support. Spectroscopy Letters, 1998, 31, 441-457.	0.5	2
189	Conjugated Polyelectrolyte Based Colorimetric Array for the Discrimination of Primary Amino Acids. ChemistrySelect, 2020, 5, 5400-5403.	0.7	2
190	Thebaine is Selectively Demethylated by Thebaine 6- $\langle i \rangle O \langle i \rangle$ -Demethylase and Codeine-3- $\langle i \rangle O \langle i \rangle$ -demethylase at Distinct Binding Sites: A Computational Study. Inorganic Chemistry, 2021, 60, 10199-10214.	1.9	2
191	Biomimetic Graphite Foils with High Foldability and Conductivity. Small Methods, 2019, 3, 1800282.	4.6	1
192	Cover Picture: 1D Arrangement of Au Nanoparticles by the Helical Structure of Schizophyllan: A Unique Encounter of a Natural Product with Inorganic Compounds (Angew. Chem. Int. Ed. 13/2005). Angewandte Chemie - International Edition, 2005, 44, 1895-1895.	7.2	0
193	Titelbild: A Microstructured Graphene/Poly(N -isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation (Angew. Chem. 50/2018). Angewandte Chemie, 2018, 130, 16471-16471.	1.6	0
194	Preparation of Anisotropic Conductive Graphene Aerogel/Polydimethylsiloxane Composites as LEGO® Modulars. SSRN Electronic Journal, 0, , .	0.4	0