Robert J Madix

List of Publications by Citations

Source: https://exaly.com/author-pdf/3895348/robert-j-madix-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

235
papers

9,140
citations

49
h-index

83
g-index

239
ext. papers

7
ext. citations

7
avg, IF

L-index

#	Paper	IF	Citations
235	The selective oxidation of CH3OH to H2CO on a copper(110) catalyst. <i>Journal of Catalysis</i> , 1978 , 53, 208	3- 7 .27	465
234	The oxidation of methanol on a silver (110) catalyst. <i>Surface Science</i> , 1978 , 76, 531-558	1.8	327
233	Vibrational spectra of molecular and atomic oxygen on Ag(110). Chemical Physics Letters, 1980 , 76, 294	-29 , 7	246
232	Adsorption of oxygen and hydrogen on Au(110)-(1 12). Surface Science, 1986 , 169, 347-356	1.8	219
231	O Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. <i>Chemical Reviews</i> , 2018 , 118, 2816-2862	68.1	190
230	Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. <i>Nature Materials</i> , 2017 , 16, 558-564	27	180
229	The adsorption and reaction of low molecular weight alkanes on metallic single crystal surfaces. <i>Surface Science Reports</i> , 2003 , 50, 107-199	12.9	172
228	Selectivity control in gold-mediated esterification of methanol. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4206-9	16.4	157
227	Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene. <i>Journal of the American Chemical Society</i> , 1987 , 109, 1708-1714	16.4	157
226	Molecular beam studies of gas-surface collision dynamics. <i>Progress in Surface Science</i> , 1991 , 38, 1-102	6.6	156
225	Role of Defects in the Adsorption of Aliphatic Alcohols on the TiO2(110) Surface. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 10680-10692	3.4	149
224	Reactive scattering from solid surfaces. Surface Science Reports, 1983, 3, 413-495	12.9	141
223	A vibrational study of formic acid interaction with clean and oxygen-covered silver (110) surfaces. <i>Surface Science</i> , 1981 , 105, 177-195	1.8	138
222	The oxidation of ethanol on Cu(110) and Ag(110) catalysts. <i>Applications of Surface Science</i> , 1978 , 1, 303-	·328	136
221	Dissociative chemisorption of methane on Pt(111). Surface Science, 1989 , 215, 1-28	1.8	120
220	Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology. <i>ACS Catalysis</i> , 2015 , 5, 6263-6270	13.1	118
219	Surface-mediated self-coupling of ethanol on gold. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5757-9	16.4	111

(1988-2008)

218	Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. <i>Chemical Society Reviews</i> , 2008 , 37, 2243-61	58.5	108
217	The oxidation of H2CO on a copper(110) surface. Surface Science, 1979, 84, 375-386	1.8	101
216	The decomposition of formic acid on Ni(100). Surface Science, 1979, 79, 394-412	1.8	101
215	Identification of the intermediates in the dehydration of formic acid on Ni(110) by high resolution electron energy loss vibrational spectroscopy. <i>Surface Science</i> , 1983 , 125, 481-489	1.8	98
214	Precursors and trapping in the molecular chemisorption of CO on Ni(100). <i>Surface Science</i> , 1987 , 180, 47-76	1.8	96
213	Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16571-80	16.4	94
212	Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2(110) surfaces. <i>Surface Science</i> , 2003 , 544, 241-260	1.8	89
211	Electronic structure and growth of vanadium on TiO2(110). Surface Science, 2000, 450, 12-26	1.8	89
210	Trapping dynamics of xenon on Pt(111). Surface Science, 1990 , 226, 180-190	1.8	86
209	The characterization of surface carbides of tungsten. <i>Journal of Catalysis</i> , 1978 , 54, 414-425	7.3	85
208	Characterization of the Acid B ase Properties of the TiO2(110) Surface by Adsorption of Amines. Journal of Physical Chemistry B, 2003 , 107, 3225-3233	3.4	81
207	Low and high coverage determinations of the rate of carbon monoxide adsorption and desorption from Pt(110). <i>Journal of Chemical Physics</i> , 1980 , 73, 3480-3485	3.9	81
206	Modulated beam relaxation spectrometry. Surface Science, 1974 , 46, 317-341	1.8	80
205	Dynamics of molecular CH4 adsorption on Pt(111). Surface Science, 1989 , 222, 213-246	1.8	78
204	Subsurface Hydrogen Diffusion into Pd Nanoparticles: Role of Low-Coordinated Surface Sites and Facilitation by Carbon. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3539-3544	3.8	76
203	Reaction Kinetics and Mechanism on Metal Single Crystal Surfaces. <i>Advances in Catalysis</i> , 1980 , 29, 1-53	2.4	76
202	Chemical relaxation molecular beam studies of reactive gas-solid scattering. <i>Surface Science</i> , 1971 , 24, 264-287	1.8	76
201	Epoxidation of olefins on silver: conversion of norbornene to norbornene oxide by atomic oxygen on silver(110). <i>Journal of the American Chemical Society</i> , 1988 , 110, 8540-8541	16.4	75

200	Preparation and reactions of V2O5 supported on TiO2(110). Surface Science, 2001, 474, L213-L216	1.8	73
199	Chemisorption of dioxygen on the Ag(110) surface. <i>Journal of Chemical Physics</i> , 1988 , 88, 3988-3995	3.9	70
198	Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 4237-4241	13.1	63
197	Partial oxidation of methanol to formaldehyde on a model supported monolayer vanadia catalyst: vanadia on TiO2(110). <i>Surface Science</i> , 2002 , 496, 51-63	1.8	63
196	Stochastic simulations of the trapping of ethane on Pt(111) from a realistic potential: The roles of energy transfer processes and surface corrugation. <i>Journal of Chemical Physics</i> , 1996 , 104, 3134-3142	3.9	62
195	Vibrational characterization of carbon monoxide adsorption on sulfur modified Ni(100) surfaces. <i>Surface Science</i> , 1984 , 143, 46-56	1.8	59
194	Precious metal magic: catalytic wizardry. <i>Materials Today</i> , 2011 , 14, 134-142	21.8	57
193	Vibrational spectroscopy of sulfur dioxide on the silver(110) surface: comparison to inorganic complexes. <i>Langmuir</i> , 1986 , 2, 406-411	4	57
192	Highly selective acylation of dimethylamine mediated by oxygen atoms on metallic gold surfaces. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 394-8	16.4	56
191	Oxygen-hydrogen and carbon-hydrogen bond activation in ethylene glycol by atomic oxygen on silver(110): heterometallacycle formation and selective dehydrogenation to glyoxal. <i>Journal of the American Chemical Society</i> , 1989 , 111, 3570-3577	16.4	55
190	Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold. <i>Chemical Science</i> , 2010 , 1, 310	9.4	53
189	Van der Waals interactions determine selectivity in catalysis by metallic gold. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13333-40	16.4	52
188	Molecular propane adsorption dynamics on Pt(110)[1 ፲፱). Surface Science, 1993 , 297, 253-271	1.8	51
187	Alkane dissociation dynamics on Pt(110)[11]. Journal of Chemical Physics, 1993, 98, 9963-9976	3.9	51
186	Oxidation of tert-butyl alcohol to isobutylene oxide on a silver(110) surface: the role of unactivated carbon-hydrogen bonds in product selectivity. <i>Journal of the American Chemical Society</i> , 1989 , 111, 382	6-38 3 5	49
185	Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O2. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8312-8323	3.8	49
184	Ethane dissociation dynamics on Pt(111). Surface Science, 1992, 275, 265-280	1.8	48
183	The reactivity of sulfur-containing molecules on noble metal surfaces. Surface Science, 1994 , 311, 159-1	71 .8	47

(2016-1994)

182	Monitoring surface reactions with scanning tunneling microscopy: CO oxidation on p(2 🗓)-O pre-covered Cu(110) at 400 K. <i>Surface Science</i> , 1994 , 319, L34-L40	1.8	46
181	Selective Oxygen-Assisted Reactions of Alcohols and Amines Catalyzed by Metallic Gold: Paradigms for the Design of Catalytic Processes. <i>ACS Catalysis</i> , 2017 , 7, 965-985	13.1	45
180	Adsorbate-assisted adsorption: Trapping dynamics of Xe on Pt(111) at nonzero coverages. <i>Journal of Chemical Physics</i> , 1991 , 95, 5437-5443	3.9	45
179	Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model. <i>Journal of Chemical Physics</i> , 1996 , 105, 1609-1620	3.9	44
178	Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. <i>Accounts of Chemical Research</i> , 2014 , 47, 761-72	24.3	41
177	An examination of adsorbed oxygen molecules on Ag(110) by UPS. <i>Chemical Physics Letters</i> , 1983 , 97, 85-88	2.5	41
176	The effects of structured overlayers of sulfur on the kinetics and mechanism of simple reactions on Pt(111): I. Formaldehyde decomposition. <i>Applications of Surface Science</i> , 1981 , 7, 241-275		41
175	Hydrogen bonding on iron: correlation of adsorption and desorption states on Fe(100) and perturbation of the Fe?H bond with coadsorbed CO. <i>Surface Science</i> , 1996 , 347, 249-264	1.8	39
174	The adsorption and reaction of simple molecules on metal surfaces. Surface Science, 1979, 89, 540-553	1.8	38
173	Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts. <i>Journal of Catalysis</i> , 2015 , 329, 78-86	5 7·3	37
172	Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. <i>Surface Science</i> , 2012 , 606, 1129-1134	1.8	37
171	On the H2?D2 exchange on stepped platinum surfaces. <i>Surface Science</i> , 1976 , 58, 590-596	1.8	37
170	How Does Nanoporous Gold Dissociate Molecular Oxygen?. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16636-16640	3.8	36
169	Molecular adsorption and growth of n-butane adlayers on Pt(1 1 1). Surface Science, 2001, 470, 226-242	1.8	36
168	CO2 + O on Ag(110): Stoichiometry of Carbonate Formation, Reactivity of Carbonate with CO, and Reconstruction-Stabilized Chemisorption of CO2\(\textstyle{\Omega}\) Journal of Physical Chemistry B, 2001 , 105, 3878-3885	3.4	36
167	Carbon-carbon bond activation in the 1,2-ethanedioxy heterometallacycle by atomic oxygen on Ag(110). <i>Surface Science</i> , 1989 , 214, 276-288	1.8	36
166	Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO2. <i>ACS Catalysis</i> , 2020 , 10, 441-450	13.1	36
165	Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold. Journal of the American Chemical Society, 2016 , 138, 15243-15250	16.4	35

164	Selectivity limitations in the heterogeneous epoxidation of olefins: branching reactions of the oxametallacycle intermediate in the partial oxidation of styrene. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1034-5	16.4	35
163	Partial oxidation of higher olefins on Ag(111): Conversion of styrene to styrene oxide, benzene, and benzoic acid. <i>Surface Science</i> , 2006 , 600, 5025-5040	1.8	35
162	Active oxygen on Group VIII metals: activation of formic acid and formaldehyde on Pd(100). <i>Journal of the American Chemical Society</i> , 1988 , 110, 397-400	16.4	35
161	Dry Dehydrogenation of Ethanol on Pt¶u Single Atom Alloys. <i>Topics in Catalysis</i> , 2018 , 61, 328-335	2.3	34
160	Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO2: Stable Au-Based Oxidation Catalysts. <i>Chemistry of Materials</i> , 2019 , 31, 5759-5768	9.6	34
159	The adsorption and reaction of Acetonitrile on clean and oxygen covered Ag(110) surfaces. <i>Surface Science</i> , 1986 , 175, 445-464	1.8	34
158	Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface. <i>Chemistry - A European Journal</i> , 2014 , 20, 4646-52	4.8	33
157	The adsorption of hydrogen sulfide on clean and sulfided Au(110). Surface Science, 1991 , 258, 359-375	1.8	33
156	The adsorption dynamics of small alkanes on (111) surfaces of platinum group metals. <i>Surface Science</i> , 2004 , 557, 215-230	1.8	32
155	Oxygen-Activated Combustion of Alkenes on the Pd(100) Surface. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5523-5530	16.4	32
154	Reactivity of Sulfur-Containing Molecules on Noble Metal Surfaces. 4. Benzenethiol on Au(110). Journal of the American Chemical Society, 1994 , 116, 3020-3027	16.4	32
153	The desorption kinetics of water and formic acid from Ni(110) following low-temperature adsorption. <i>Journal of Catalysis</i> , 1978 , 51, 47-63	7.3	32
152	Active sites for methanol partial oxidation on nanoporous gold catalysts. <i>Journal of Catalysis</i> , 2016 , 344, 778-783	7.3	32
151	Cesium promotion in styrene epoxidation on silver catalysts. <i>Journal of the American Chemical Society</i> , 2010 , 132, 434-5	16.4	30
150	Surface corrugation effects: molecular ethane adsorption dynamics on rigid adsorbate-covered surfaces of Pt(111). <i>Surface Science</i> , 1998 , 395, 148-167	1.8	30
149	Adsorption and reaction of sulfur dioxide with Cu(110) and Cu(110)-p(21)-O. <i>Journal of Chemical Physics</i> , 2002 , 116, 4698-4706	3.9	30
148	The adsorption dynamics of molecular carbon dioxide on Pt() and Pd(). Surface Science, 2002, 497, 356-3	3 7,2 8	30
147	Surface-mediated cycloaddition: 1,4-addition of atomically adsorbed oxygen to 1,3-butadiene on silver(110). <i>Journal of the American Chemical Society</i> , 1991 , 113, 9848-9851	16.4	30

146	The mechanism of acetate oxidation on Ag(110). Surface Science, 1986, 172, 598-614	1.8	30
145	The Adsorption Dynamics of Molecular Methane, Propane, and Neopentane on Pd(111): Theory and Experiment [] Journal of Physical Chemistry B, 2002 , 106, 8248-8257	3.4	29
144	The kinetic isotope effect for C-H bond activation on Cu(110): the effects of tunnelling. <i>Surface Science</i> , 1992 , 277, 246-252	1.8	29
143	Partial oxidation of hydrocarbons on silver: conversion of 1-butene to maleic anhydride by atomically adsorbed oxygen on Ag(110). <i>Surface Science</i> , 1991 , 253, 13-23	1.8	29
142	Structure Sensitivity in the Partial Oxidation of Styrene, Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3675-3679	3.8	28
141	Reactivity of Stoichiometric and Defective TiO2(110) Surfaces toward DCOOD Decomposition. Journal of Physical Chemistry B, 2003 , 107, 11709-11720	3.4	28
140	Activated metallic gold as an agent for direct methoxycarbonylation. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20378-83	16.4	27
139	Real-time observation of surface reactivity and mobility with scanning tunneling microscopy. <i>Accounts of Chemical Research</i> , 2003 , 36, 471-80	24.3	27
138	The growth of vanadium oxide on alumina and titania single crystal surfaces. <i>Faraday Discussions</i> , 1999 , 114, 67-84	3.6	27
137	Monolayer structure of phenoxy species on Cu(110): an STM study. Surface Science, 1995, 341, L1065-L	10:78	27
137	Monolayer structure of phenoxy species on Cu(110): an STM study. <i>Surface Science</i> , 1995 , 341, L1065-L Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406	10.78	27 27
	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of		
136	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406	1.8	
136	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406 Surface explosion: HCOOH on Ni <110>. <i>Surface Science</i> , 1974 , 42, 329-330 Surface microstructure effects: molecular ethane adsorption dynamics on Pt(110)-(1 \(\mathbb{P} \)). <i>Surface</i>	1.8	27
136 135	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406 Surface explosion: HCOOH on Ni <110>. <i>Surface Science</i> , 1974 , 42, 329-330 Surface microstructure effects: molecular ethane adsorption dynamics on Pt(110)-(1 12). <i>Surface Science</i> , 1996 , 365, 683-700 Surface Structure Dependence of the Dry Dehydrogenation of Alcohols on Cu(111) and Cu(110).	1.8 1.8	27 27 26
136 135 134	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406 Surface explosion: HCOOH on Ni <110>. <i>Surface Science</i> , 1974 , 42, 329-330 Surface microstructure effects: molecular ethane adsorption dynamics on Pt(110)-(112). <i>Surface Science</i> , 1996 , 365, 683-700 Surface Structure Dependence of the Dry Dehydrogenation of Alcohols on Cu(111) and Cu(110). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12800-12806 Direct dissociative chemisorption of alkanes on Pt(111): Influence of molecular complexity. <i>Journal</i>	1.8 1.8 1.8	27 27 26 25
136 135 134 133	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated C?H bonds on metal surfaces. <i>Surface Science</i> , 1989 , 214, 396-406 Surface explosion: HCOOH on Ni <110>. <i>Surface Science</i> , 1974 , 42, 329-330 Surface microstructure effects: molecular ethane adsorption dynamics on Pt(110)-(1 12). <i>Surface Science</i> , 1996 , 365, 683-700 Surface Structure Dependence of the Dry Dehydrogenation of Alcohols on Cu(111) and Cu(110). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12800-12806 Direct dissociative chemisorption of alkanes on Pt(111): Influence of molecular complexity. <i>Journal of Chemical Physics</i> , 2000 , 112, 396-407 Atom-resolved investigation of surface reactions: ammonia and oxygen on Cu(110) at 300 and 400	1.8 1.8 1.8 3.8	27 27 26 25 25

128	Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4x4)-O surface with CO. <i>Journal of Chemical Physics</i> , 2007 , 126, 084707	3.9	24
127	Reactivity of methanol on TiO2 nanoparticles supported on the Au(1 1 1) surface. <i>Surface Science</i> , 2005 , 591, 1-12	1.8	24
126	Oxidation of tert-butyl alcohol to isobutylene oxide: rate-limiting carbon-hydrogen activation by a Ag(110) surface. <i>Journal of the American Chemical Society</i> , 1987 , 109, 8082-8083	16.4	24
125	Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C?C Unsaturation on Reaction Selectivity. <i>ACS Catalysis</i> , 2016 , 6, 1833-1839	13.1	23
124	A variable temperature scanning tunneling microscope for the study of surface reactions in ultrahigh vacuum. <i>Review of Scientific Instruments</i> , 1995 , 66, 4552-4556	1.7	23
123	The dynamics of precursor adsorption: ethane on Pt(111). Surface Science, 1990, 237, L424-L431	1.8	23
122	The dynamical origin of non-normal energy scaling and the effect of surface temperature on the trapping of low molecular weight alkanes on Pt(111). <i>Surface Science</i> , 1997 , 380, 489-496	1.8	22
121	Competitive Reactions of Atomic Oxygen with Acetone on Ag(110): Nucleophilicity Versus Basicity. Journal of the American Chemical Society, 1995 , 117, 2301-2312	16.4	22
120	Site blocking by hydrogen: CO on clean and H-presaturated Fe(100). Surface Science, 1992, 271, 81-84	1.8	22
119	Reactions of weak organic acids with oxygen atoms on Ag(100): Facile and selective conversion of cyclohexene to benzene. <i>Surface Science</i> , 1990 , 226, L71-L78	1.8	22
118	The kinetics and mechanism of catalytic reactions by molecular beam relaxation spectroscopy: HCOOH decomposition. <i>Surface Science</i> , 1977 , 65, 287-313	1.8	22
117	Alkane activation via precursor-mediated dissociation on Ir(110). Surface Science, 1995 , 323, 1-5	1.8	21
116	Oxidative coupling and ring opening of furan on silver(110): formation of maleic anhydride, benzene, and bifuran. <i>Journal of the American Chemical Society</i> , 1993 , 115, 729-736	16.4	21
115	Reactivity of Sulfur-Containing Molecules on Noble Metal Surfaces. 2. tert-Butyl Thioalcohol on Au(110). <i>Journal of the American Chemical Society</i> , 1994 , 116, 3012-3019	16.4	21
114	IFallyl, and trimethylenemethane complexes derived from isobutylene adsorption on oxygen-activated Ag(110). <i>Surface Science</i> , 1992 , 262, 51-67	1.8	21
113	Chemical relaxation molecular beam studies of reactive gas-solid scattering. <i>Surface Science</i> , 1971 , 24, 288-301	1.8	21
112	Oxidation of Styrene and Phenylacetaldehyde on Ag(111): Evidence for Transformation of Surface Oxametallacycle. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4725-4734	3.8	20
111	Trapping dynamics of isobutane, n-butane, and neopentane on Pt(111): Effects of molecular weight and structure. <i>Journal of Chemical Physics</i> , 1999 , 110, 10585-10598	3.9	20

110	Surface corrugation effects on the adsorption dynamics of xenon on Pt(110)[1 12). <i>Surface Science</i> , 1993 , 297, L148-L155	1.8	20
109	The effect of site distribution on desorption kinetics: carbon monoxide from Ni(100). <i>Surface Science</i> , 1994 , 301, 83-88	1.8	20
108	Enhancing catalytic performance of dilute metal alloy nanomaterials. <i>Communications Chemistry</i> , 2020 , 3,	6.3	20
107	Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts. <i>Faraday Discussions</i> , 2016 , 188, 57-67	3.6	19
106	Dual-function of alcohols in gold-mediated selective coupling of amines and alcohols. <i>Chemistry - A European Journal</i> , 2012 , 18, 2313-8	4.8	19
105	Alkene and Arene Combustion on Pd(111). Journal of Catalysis, 1998, 178, 520-532	7.3	19
104	Anomalous effects of weak chemisorption on desorption kinetics of alkenes: The desorption of propylene and propane from Ag(110). <i>Journal of Chemical Physics</i> , 1996 , 104, 1699-1708	3.9	19
103	Site-specific reactivity of oxygen at Cu(110) step defects: an STM study of ammonia dehydrogenation. <i>Surface Science</i> , 1996 , 367, L95-L101	1.8	19
102	Kinetic isotope effect in direct ethane dissociation on Pt(111). Surface Science, 1993, 294, 420-428	1.8	19
101	The adsorption and reaction of 1,2-propanediol on Ag(110) under oxygen lean conditions. <i>Surface Science</i> , 1994 , 303, 279-296	1.8	19
100	C?C and C?H bond activation of 1,2-propanedioxy by atomic oxygen on Ag(110): Effects of CO-adsorbed oxygen on reaction mechanism. <i>Surface Science</i> , 1994 , 303, 297-311	1.8	19
99	Kinetics of hydroxyl recombination on clean and oxygen-covered silver(110). <i>Langmuir</i> , 1985 , 1, 526-52	84	19
98	Determination of adsorbate coverages by leed and XPS. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1980 , 20, 281-287	1.7	19
97	New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica. <i>Chemistry - A European Journal</i> , 2018 , 24, 1833-1837	4.8	18
96	Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface. <i>Nature Communications</i> , 2016 , 7, 13139	17.4	18
95	Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. <i>Journal of Catalysis</i> , 2019 , 380, 366-374	7.3	18
94	Tuning the Stability of Surface Intermediates Using Adsorbed Oxygen: Acetate on Au(111). <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1126-30	6.4	18
93	Butyrophenone on O-TiO2(110): one-dimensional motion in a weakly confined potential well. <i>ACS Nano</i> , 2012 , 6, 2925-30	16.7	18

92	A paradigm for predicting selective oxidation on noble metals: oxidative catalytic coupling of amines and aldehydes on metallic gold. <i>Faraday Discussions</i> , 2011 , 152, 241-52; discussion 293-306	3.6	18	
91	Topographic nano-restructuring: sulfur dioxide adsorption on Cu(110). Surface Science, 2003, 524, L84-l	- 8:8 8	18	
90	Imaging Surface Reactions at Atomic Resolution: A Wealth of Behavior on the Nanoscale. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3105-3116	3.4	18	
89	Reaction of sulfur dioxide with Ag(110) β (21)-O: a LEED, TPRS, and STM investigation. <i>Surface Science</i> , 2002 , 504, 223-234	1.8	18	
88	Hydrogen migration at restructuring palladium-silver oxide boundaries dramatically enhances reduction rate of silver oxide. <i>Nature Communications</i> , 2020 , 11, 1844	17.4	18	
87	Methyl ester synthesis catalyzed by nanoporous gold: from 10 B Torr to 1 atm. <i>Catalysis Science and Technology</i> , 2015 , 5, 1299-1306	5.5	17	
86	Direct collisionally activated and trapping-mediated dissociative chemisorption of neopentane on clean Pt(111): the activity of surface defect sites. <i>Surface Science</i> , 1997 , 393, 150-161	1.8	17	
85	Two-dimensional condensation anisotropic crystallization: H2/Ni(1 1 0). Surface Science, 2004, 557, 231-	-248	17	
84	The effect of hydrogen on the dynamics of the molecular adsorption of ethane on Pt(111). <i>Surface Science</i> , 1994 , 303, 312-318	1.8	17	
83	Chemisorption-induced changes in the x-ray-absorption fine structure of adsorbed species. <i>Physical Review Letters</i> , 1991 , 67, 1653-1656	7.4	17	
82	The surface intermediate H2COO. <i>Applications of Surface Science</i> , 1980 , 5, 426-428		17	
81	Role of surface-bound intermediates in the oxygen-assisted synthesis of amides by metallic silver and gold. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12604-10	16.4	16	
80	The adsorption of and reaction of NO2 on Ag(1 1 1)-p(4 🖟)-O and formation of surface nitrate. <i>Surface Science</i> , 2005 , 587, 193-204	1.8	16	
79	A study of the gaseous etching of germanium by oxygen. <i>Surface Science</i> , 1967 , 7, 109-124	1.8	16	
78	Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15907-15916	16.4	16	
77	Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 226	5 7 -226	66 ¹⁶	
76	General Effect of van der Waals Interactions on the Stability of Alkoxy Intermediates on Metal Surfaces. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 555-560	3.4	15	
75	Controlling O coverage and stability by alloying Au and Ag. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26844-26853	3.6	15	

74	Surface-mediated isomerization and oxidation of allyl alcohol on copper(110). <i>Journal of the American Chemical Society</i> , 1989 , 111, 4553-4561	16.4	15
73	The mechanism of formate oxidation on Ag(110). Surface Science, 1986, 176, 415-424	1.8	15
72	The application of flash desorption spectroscopy to chemical reactions on surfaces: Temperature programmed reaction spectroscopy. <i>Critical Reviews in Solid State and Materials Sciences</i> , 1978 , 7, 143-1	5 ^{10.1}	15
71	Switching Selectivity in Oxidation Reactions on Gold: The Mechanism of CLT vs CH Bond Activation in the Acetate Intermediate on Au(111). ACS Catalysis, 2014, 4, 3281-3288	13.1	14
70	Coadsorption of CO and CH3O on Ni(100). Surface Science, 1997, 375, 268-280	1.8	14
69	Origin of vinylic C?H bond activation in the combustion of alkenes on palladium: an HREELS study of propene on Pd(100)-p(2 ᠒)-O. <i>Surface Science</i> , 1997 , 391, L1165-L1171	1.8	14
68	Mass and lattice effects in trapping: Ar, Kr, and Xe on Pt(111), Pd(111), and Ni(111). Surface Science, 2004 , 565, 70-80	1.8	14
67	The Role of Surface Deconstruction in the Autocatalytic Decomposition of Formate and Acetate on Ni(110) <i>Journal of Physical Chemistry B</i> , 2004 , 108, 14374-14383	3.4	14
66	Lateral interactions in the desorption kinetics of weakly adsorbed species: unexpected differences in the desorption of C4 alkenes and alkanes from Ag(110) due to oriented Ebonding of the alkenes. <i>Surface Science</i> , 1995 , 339, 8-22	1.8	14
65	The molecular adsorption of ethane on sulfur- and ethylidyne-covered surfaces of Pt(111). <i>Surface Science</i> , 1996 , 364, 325-334	1.8	14
64	Water facilitates oxygen migration on gold surfaces. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2196	5- <u>3</u> 2804	14
63	Catalyst design for enhanced sustainability through fundamental surface chemistry. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	13
62	In situ STM imaging of ammonia oxydehydrogenation on Cu(110): the reactivity of preadsorbed and transient oxygen species. <i>Surface Science</i> , 1997 , 387, 1-10	1.8	13
61	Coverage dependence of neopentane trapping dynamics on Pt(111). Surface Science, 1998 , 400, 11-18	1.8	13
60	The effect of subsurface oxygen on the orientation of molecular oxygen on Ag(110). <i>Surface Science</i> , 1995 , 339, 23-28	1.8	13
59	Facile Ester Synthesis on Ag-Modified Nanoporous Au: Oxidative Coupling of Ethanol and 1-Butanol Under UHV Conditions. <i>Catalysis Letters</i> , 2015 , 145, 1217-1223	2.8	12
58	A Comparative Ab Initio Study of Anhydrous Dehydrogenation of Linear-Chain Alcohols on Cu(110). Journal of Physical Chemistry C, 2018 , 122, 7806-7815	3.8	12
57	Molecular dynamics simulations for xenon adsorption on Pt(111): dynamical differences in the effects produced by the Barker-Rettner and Morse potentials. <i>Surface Science</i> , 1997 , 391, 150-160	1.8	12

56	CO/H2 surface complex on W(100). Surface Science, 1978 , 77, L379-L383	1.8	12
55	Hydrocarbon combustion at high oxygen coverage on palladium: a model study on Pd(100). <i>Catalysis Letters</i> , 1996 , 39, 1-4	2.8	11
54	Surface reactivity: heterogeneous reactions on single crystal surfaces. <i>Accounts of Chemical Research</i> , 1979 , 12, 265-270	24.3	11
53	Ligand and cluster effects in the decomposition of formic acid on copper/nickel (110) single-crystal surfaces. <i>Inorganic Chemistry</i> , 1978 , 17, 1103-1108	5.1	11
52	Dissecting the Performance of Nanoporous Gold Catalysts for Oxygen-Assisted Coupling of Methanol with Fundamental Mechanistic and Kinetic Information. <i>ACS Catalysis</i> , 2019 , 9, 4477-4487	13.1	10
51	First-Principles Study of Alkoxides Adsorbed on Au(111) and Au(110) Surfaces: Assessing the Roles of Noncovalent Interactions and Molecular Structures in Catalysis. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27905-27914	3.8	10
50	Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 6971-6981	13.1	10
49	Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110). <i>Chemical Science</i> , 2018 , 9, 3759-3766	9.4	9
48	Strong structure sensitivity in the partial oxidation of styrene on silver single crystals. <i>Surface Science</i> , 2009 , 603, 1751-1755	1.8	9
47	Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag111. <i>Journal of Chemical Physics</i> , 2005 , 122, 214718	3.9	9
46	The prediction of trapping probabilities for ethane by molecular dynamics simulations: scaling from Pt to Pd. <i>Surface Science</i> , 2002 , 505, 115-123	1.8	9
45	Effect of Frustrated Rotations on the Pre-Exponential Factor for Unimolecular Reactions on Surfaces: A Case Study of Alkoxy Dehydrogenation. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1429-143	3 .8	9
44	The creation of microscopic surface structures by interfacial diffusion of Au and Ag on Ag(110): A XPS and STM study. <i>Surface Science</i> , 2016 , 643, 36-44	1.8	8
43	Coverage and site distribution effects in the desorption of carbon monoxide from sulfur-covered Ni(100). <i>Surface Science</i> , 1995 , 339, 29-40	1.8	8
42	Oxygen-hydrogen and carbon-hydrogen bond activation in cyclohexanol by atomic oxygen on silver (110): alkoxide formation and selective dehydrogenation to cyclohexanone. <i>Langmuir</i> , 1991 , 7, 3034-304	1 6	8
41	The mechanism of methanol formation and other reactions following formaldehyde adsorption on Ni(110). <i>International Journal of Chemical Kinetics</i> , 1978 , 10, 871-882	1.4	8
40	Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol. <i>Surface Science</i> , 2016 , 652, 58-66	1.8	7
39	An STM investigation of sulfur and alkoxide adsorption on Ni(100). <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11307-13	3.4	7

38	Collective motion and oscillatory interaction: [IuD] and sulfite on Cu(). Surface Science, 2003, 526, L127-L	.11382	7
37	Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110). <i>Applications of Surface Science</i> , 1982 , 14, 41-46		7
36	Growth and auto-oxidation of Pd on single-layer AgO/Ag(111). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 6202-6209	3.6	6
35	Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110). <i>Topics in Catalysis</i> , 2018 , 61, 299-307	2.3	6
34	The dissociation-induced displacement of chemisorbed O2 by mobile O atoms and the autocatalytic recombination of O due to chain fragmentation on Ag(110). <i>Surface Science</i> , 2014 , 630, 187-194	1.8	6
33	Non-uniform product inhibition in surface reactions Spatial organization effects in ammonia oxydehydrogenation on Cu(110). <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 4197-4	200	6
32	CO-Induced Segregation of Hydrogen into the Subsurface on Ni(110). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 7247-7252	3.4	6
31	The coadsorption of water and molecular oxygen on Ag(110): absence of O?O bond activation by water. <i>Surface Science</i> , 1992 , 273, 121-128	1.8	6
30	The dynamic behavior of dilute metallic alloy PdxAu1½/SiO2 raspberry colloid templated catalysts under CO oxidation. <i>Catalysis Science and Technology</i> , 2021 , 11, 4072-4082	5.5	6
29	Surface-mediated NH and N addition to styrene on Ag(110). <i>Journal of the American Chemical Society</i> , 2006 , 128, 14266-7	16.4	5
28	Molecular ethane adsorption dynamics on oxygen-covered Pt(111). <i>Topics in Catalysis</i> , 2000 , 14, 63-69	2.3	5
27	Dehydrogenation, hydrogenation, exchange and combustion reactions of aromatic hydrocarbons on Pd(100). <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 3685		5
26	Surface microcatalysis by MBRS: Molecular beam waveforms. Surface Science, 1974, 45, 696-698	1.8	5
25	Dilute Pd-in-Au alloy RCT-SiO2 catalysts for enhanced oxidative methanol coupling. <i>Journal of Catalysis</i> , 2021 ,	7.3	5
24	Tuning reactivity layer-by-layer: formic acid activation on Ag/Pd(111). Chemical Science, 2020, 11, 6492-0	6 49 9	5
23	Designing new catalysts: synthesis of new active structures: general discussion. <i>Faraday Discussions</i> , 2016 , 188, 131-59	3.6	4
22	Analysis of sulfur-induced selectivity changes for anhydrous methanol dehydrogenation on Ni(100) surfaces. <i>Surface Science</i> , 2013 , 613, 58-62	1.8	4
21	Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate. <i>Langmuir</i> , 2010 , 26, 16282-6	4	4

20	Aromatization of 1,3,5,7-cyclooctatetraene and oxydehydrogenation of cis-cyclooctene, 1,5-cyclooctadiene and 1,3,5,7-cyclooctatetraene on clean and oxygen precovered Ag(110). <i>Surface Science</i> , 1996 , 365, 701-728	1.8	4
19	Spatially Nonuniform Reaction Rates during Selective Oxidation on Gold. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12210-12215	16.4	4
18	Selective Activation of Methyl CH Bonds of Toluene by Oxygen on Metallic Gold. <i>Catalysis Letters</i> , 2018 , 148, 1985-1989	2.8	4
17	Predicting a Sharp Decline in Selectivity for Catalytic Esterification of Alcohols from van der Waals Interactions. <i>Angewandte Chemie</i> , 2020 , 132, 10956-10959	3.6	3
16	Predicting a Sharp Decline in Selectivity for Catalytic Esterification of Alcohols from van der Waals Interactions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10864-10867	16.4	3
15	Alkyl groups as synthetic vehicles in gold-mediated oxidative coupling reactions. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3179-85	3.6	3
14	Interfacial chemistry: goldß enigmatic surface. <i>Nature</i> , 2011 , 479, 482-3	50.4	3
13	Reaction of sulfur dioxide with Ni(100) and Ni(100)-p(22)-O. Surface Science, 2005, 592, 141-149	1.8	3
12	Oxophilicity Drives Oxygen Transfer at a PalladiumBilver Interface for Increased CO Oxidation Activity. <i>ACS Catalysis</i> , 2020 , 10, 13878-13889	13.1	3
11	Moving from Fundamental Knowledge of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst Performance in Reactors. <i>ACS Catalysis</i> , 2021 , 11, 3048-3066	13.1	3
10	Catalyst design from theory to practice: general discussion. Faraday Discussions, 2016, 188, 279-307	3.6	2
9	Oxygen adsorption on spontaneously reconstructed Au(511). Surface Science, 2019, 679, 296-303	1.8	2
8	Surface reactivity and surface spectroscopies. <i>Ultramicroscopy</i> , 1989 , 31, 58-66	3.1	1
7	Reactions of molecularly adsorbed oxygen on metals: Carbon monoxide and sulfur dioxide reactions with oxygen on Ag(110). <i>Surface Science Letters</i> , 1989 , 209, L151-L156		1
6	Toward benchmarking theoretical computations of elementary rate constants on catalytic surfaces: formate decomposition on Au and Cu <i>Chemical Science</i> , 2022 , 13, 804-815	9.4	1
5	Exploiting the Liquid Phase to Enhance the Cross-Coupling of Alcohols over Nanoporous Gold Catalysts. <i>ACS Catalysis</i> , 2022 , 12, 183-192	13.1	1
4	The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition. <i>Catalysis Letters</i> ,1	2.8	0
3	Quantifying oxygen induced surface enrichment of a dilute PdAu alloy catalyst. <i>Catalysis Science and Technology</i> ,	5.5	O

New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica. *Chemistry - A European Journal*, **2018**, 24, 1743-1743

4.8

Long-range ordering of stable, surface-bound intermediates: RAIRS, TPRS and STM studies of toluene oxidation on Ag(110) **2018**, 4, 1-7