
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895348/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	The selective oxidation of CH3OH to H2CO on a copper(110) catalyst. Journal of Catalysis, 1978, 53, 208-227.	6.2	541
2	The oxidation of methanol on a silver (110) catalyst. Surface Science, 1978, 76, 531-558.	1.9	385
3	O ₂ Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chemical Reviews, 2018, 118, 2816-2862.	47.7	363
4	Vibrational spectra of molecular and atomic oxygen on Ag(11O). Chemical Physics Letters, 1980, 76, 294-297.	2.6	259
5	Adsorption of oxygen and hydrogen on Au(110)-(1 × 2). Surface Science, 1986, 169, 347-356.	1.9	252
6	Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nature Materials, 2017, 16, 558-564.	27.5	243
7	The adsorption and reaction of low molecular weight alkanes on metallic single crystal surfaces. Surface Science Reports, 2003, 50, 107-199.	7.2	184
8	Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene. Journal of the American Chemical Society, 1987, 109, 1708-1714.	13.7	174
9	Molecular beam studies of gas-surface collision dynamics. Progress in Surface Science, 1991, 38, 1-102.	8.3	167
10	Selectivity Control in Goldâ€Mediated Esterification of Methanol. Angewandte Chemie - International Edition, 2009, 48, 4206-4209.	13.8	167
11	Role of Defects in the Adsorption of Aliphatic Alcohols on the TiO2(110) Surface. Journal of Physical Chemistry B, 2002, 106, 10680-10692.	2.6	162
12	Reactive scattering from solid surfaces. Surface Science Reports, 1983, 3, 413-495.	7.2	151
13	A vibrational study of formic acid interaction with clean and oxygen-covered silver (110) surfaces. Surface Science, 1981, 105, 177-195.	1.9	145
14	The oxidation of ethanol on Cu(110) and Ag(110) catalysts. Applications of Surface Science, 1978, 1, 303-328.	1.0	144
15	Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology. ACS Catalysis, 2015, 5, 6263-6270.	11.2	140
16	Dissociative chemisorption of methane on Pt(111). Surface Science, 1989, 215, 1-28.	1.9	130
17	The oxidation of H2CO on a copper(110) surface. Surface Science, 1979, 84, 375-386.	1.9	124
18	The decomposition of formic acid on Ni(100). Surface Science, 1979, 79, 394-412.	1.9	121

#	Article	IF	CITATIONS
19	Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chemical Society Reviews, 2008, 37, 2243.	38.1	120
20	Surface-Mediated Self-Coupling of Ethanol on Gold. Journal of the American Chemical Society, 2009, 131, 5757-5759.	13.7	119
21	Precursors and trapping in the molecular chemisorption of CO on Ni(100). Surface Science, 1987, 180, 47-76.	1.9	102
22	Achieving Optimum Selectivity in Oxygen Assisted Alcohol Cross-Coupling on Gold. Journal of the American Chemical Society, 2010, 132, 16571-16580.	13.7	102
23	Identification of the intermediates in the dehydration of formic acid on Ni(110) by high resolution electron energy loss vibrational spectroscopy. Surface Science, 1983, 125, 481-489.	1.9	101
24	The characterization of surface carbides of tungsten. Journal of Catalysis, 1978, 54, 414-425.	6.2	97
25	Trapping dynamics of xenon on Pt(111). Surface Science, 1990, 226, 180-190.	1.9	96
26	Electronic structure and growth of vanadium on TiO2(110). Surface Science, 2000, 450, 12-26.	1.9	96
27	Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2(110) surfaces. Surface Science, 2003, 544, 241-260.	1.9	96
28	Characterization of the Acidâ `Base Properties of the TiO2(110) Surface by Adsorption of Amines. Journal of Physical Chemistry B, 2003, 107, 3225-3233.	2.6	96
29	Low and high coverage determinations of the rate of carbon monoxide adsorption and desorption from Pt(110). Journal of Chemical Physics, 1980, 73, 3480-3485.	3.0	91
30	Modulated beam relaxation spectrometry. Surface Science, 1974, 46, 317-341.	1.9	89
31	Epoxidation of olefins on silver: conversion of norbornene to norbornene oxide by atomic oxygen on silver(110). Journal of the American Chemical Society, 1988, 110, 8540-8541.	13.7	87
32	Chemical relaxation molecular beam studies of reactive gas-solid scattering. Surface Science, 1971, 24, 264-287.	1.9	86
33	Dynamics of molecular CH4 adsorption on Pt(111). Surface Science, 1989, 222, 213-246.	1.9	82
34	Reaction Kinetics and Mechanism on Metal Single Crystal Surfaces. Advances in Catalysis, 1980, 29, 1-53.	0.2	81
35	Subsurface Hydrogen Diffusion into Pd Nanoparticles: Role of Low-Coordinated Surface Sites and Facilitation by Carbon. Journal of Physical Chemistry C, 2012, 116, 3539-3544.	3.1	79
36	Preparation and reactions of V2O5 supported on TiO2(110). Surface Science, 2001, 474, L213-L216.	1.9	76

#	Article	IF	CITATIONS
37	Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation. ACS Catalysis, 2015, 5, 4237-4241.	11.2	76
38	Precious metal magic: catalytic wizardry. Materials Today, 2011, 14, 134-142.	14.2	75
39	Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O ₂ . Journal of Physical Chemistry C, 2019, 123, 8312-8323.	3.1	75
40	Chemisorption of dioxygen on the Ag(110) surface. Journal of Chemical Physics, 1988, 88, 3988-3995.	3.0	73
41	Stochastic simulations of the trapping of ethane on Pt(111) from a realistic potential: The roles of energy transfer processes and surface corrugation. Journal of Chemical Physics, 1996, 104, 3134-3142.	3.0	69
42	Partial oxidation of methanol to formaldehyde on a model supported monolayer vanadia catalyst: vanadia on TiO2(). Surface Science, 2002, 496, 51-63.	1.9	69
43	Highly Selective Acylation of Dimethylamine Mediated by Oxygen Atoms on Metallic Gold Surfaces. Angewandte Chemie - International Edition, 2010, 49, 394-398.	13.8	69
44	Vibrational characterization of carbon monoxide adsorption on sulfur modified Ni(100) surfaces. Surface Science, 1984, 143, 46-56.	1.9	67
45	Oxygen-hydrogen and carbon-hydrogen bond activation in ethylene glycol by atomic oxygen on silver(110): heterometallacycle formation and selective dehydrogenation to glyoxal. Journal of the American Chemical Society, 1989, 111, 3570-3577.	13.7	63
46	van der Waals Interactions Determine Selectivity in Catalysis by Metallic Gold. Journal of the American Chemical Society, 2014, 136, 13333-13340.	13.7	63
47	Oxidation of tert-butyl alcohol to isobutylene oxide on a silver(110) surface: the role of unactivated carbon-hydrogen bonds in product selectivity. Journal of the American Chemical Society, 1989, 111, 3826-3835.	13.7	61
48	Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO ₂ . ACS Catalysis, 2020, 10, 441-450.	11.2	61
49	Alkane dissociation dynamics on Pt(110)–(1×2). Journal of Chemical Physics, 1993, 98, 9963-9976.	3.0	58
50	Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold. Chemical Science, 2010, 1, 310.	7.4	58
51	Vibrational spectroscopy of sulfur dioxide on the silver(110) surface: comparison to inorganic complexes. Langmuir, 1986, 2, 406-411.	3.5	57
52	Selective Oxygen-Assisted Reactions of Alcohols and Amines Catalyzed by Metallic Gold: Paradigms for the Design of Catalytic Processes. ACS Catalysis, 2017, 7, 965-985.	11.2	56
53	Molecular propane adsorption dynamics on Pt(110)â^'(1 × 2). Surface Science, 1993, 297, 253-271.	1.9	55
54	Ethane dissociation dynamics on Pt(111). Surface Science, 1992, 275, 265-280.	1.9	53

#	Article	IF	CITATIONS
55	Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO ₂ : Stable Au-Based Oxidation Catalysts. Chemistry of Materials, 2019, 31, 5759-5768.	6.7	50
56	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	47.7	50
57	Monitoring surface reactions with scanning tunneling microscopy: CO oxidation on p(2 × 1)-O pre-covered Cu(110) at 400 K. Surface Science, 1994, 319, L34-L40.	1.9	49
58	The reactivity of sulfur-containing molecules on noble metal surfaces. Surface Science, 1994, 311, 159-171.	1.9	49
59	Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model. Journal of Chemical Physics, 1996, 105, 1609-1620.	3.0	49
60	Dry Dehydrogenation of Ethanol on Pt–Cu Single Atom Alloys. Topics in Catalysis, 2018, 61, 328-335.	2.8	49
61	Predicting Gold-Mediated Catalytic Oxidative-Coupling Reactions from Single Crystal Studies. Accounts of Chemical Research, 2014, 47, 761-772.	15.6	47
62	Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics. Journal of the American Chemical Society, 2020, 142, 15907-15916.	13.7	47
63	Adsorbateâ€assisted adsorption: Trapping dynamics of Xe on Pt(111) at nonzero coverages. Journal of Chemical Physics, 1991, 95, 5437-5443.	3.0	46
64	Hydrogen bonding on iron: correlation of adsorption and desorption states on Fe(100) and perturbation of the Feî—,H bond with coadsorbed CO. Surface Science, 1996, 347, 249-264.	1.9	46
65	How Does Nanoporous Gold Dissociate Molecular Oxygen?. Journal of Physical Chemistry C, 2016, 120, 16636-16640.	3.1	46
66	The adsorption and reaction of simple molecules on metal surfaces. Surface Science, 1979, 89, 540-553.	1.9	45
67	Active sites for methanol partial oxidation on nanoporous gold catalysts. Journal of Catalysis, 2016, 344, 778-783.	6.2	45
68	An examination of adsorbed oxygen molecules on Ag(110) by UPS. Chemical Physics Letters, 1983, 97, 85-88.	2.6	44
69	The effects of structured overlayers of sulfur on the kinetics and mechanism of simple reactions on Pt(111): I. Formaldehyde decomposition. Applications of Surface Science, 1981, 7, 241-275.	1.0	43
70	Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold. Journal of the American Chemical Society, 2016, 138, 15243-15250.	13.7	43
71	Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nature Catalysis, 2018, 1, 852-859.	34.4	42
72	Enhancing catalytic performance of dilute metal alloy nanomaterials. Communications Chemistry, 2020, 3, .	4.5	41

#	Article	IF	CITATIONS
73	On the H2î—,D2 exchange on stepped platinum surfaces. Surface Science, 1976, 58, 590-596.	1.9	40
74	Molecular adsorption and growth of n-butane adlayers on Pt(111). Surface Science, 2001, 470, 226-242.	1.9	40
75	Partial oxidation of higher olefins on Ag(111): Conversion of styrene to styrene oxide, benzene, and benzoic acid. Surface Science, 2006, 600, 5025-5040.	1.9	40
76	Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surface Science, 2012, 606, 1129-1134.	1.9	40
77	The desorption kinetics of water and formic acid from Ni(110) following low-temperature adsorption. Journal of Catalysis, 1978, 51, 47-63.	6.2	39
78	Active oxygen on Group VIII metals: activation of formic acid and formaldehyde on Pd(100). Journal of the American Chemical Society, 1988, 110, 397-400.	13.7	39
79	Carbon-carbon bond activation in the 1,2-ethanedioxy heterometallacycle by atomic oxygen on Ag(110). Surface Science, 1989, 214, 276-288.	1.9	39
80	Oxygen-Activated Combustion of Alkenes on the Pd(100) Surface. Journal of the American Chemical Society, 1995, 117, 5523-5530.	13.7	39
81	Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts. Journal of Catalysis, 2015, 329, 78-86.	6.2	39
82	Selectivity Limitations in the Heterogeneous Epoxidation of Olefins:Â Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene. Journal of the American Chemical Society, 2006, 128, 1034-1035.	13.7	38
83	CO2 + O on Ag(110):  Stoichiometry of Carbonate Formation, Reactivity of Carbonate with CO, and Reconstruction-Stabilized Chemisorption of CO2. Journal of Physical Chemistry B, 2001, 105, 3878-3885.	2.6	37
84	Ag/Au Mixed Sites Promote Oxidative Coupling of Methanol on the Alloy Surface. Chemistry - A European Journal, 2014, 20, 4646-4652.	3.3	37
85	The adsorption and reaction of Acetonitrile on clean and oxygen covered Ag(110) surfaces. Surface Science, 1986, 175, 445-464.	1.9	36
86	The adsorption of hydrogen sulfide on clean and sulfided Au(110). Surface Science, 1991, 258, 359-375.	1.9	36
87	Surface explosion: HCOOH on Ni ã€^110〉. Surface Science, 1974, 42, 329-330.	1.9	35
88	The adsorption dynamics of small alkanes on () surfaces of platinum group metals. Surface Science, 2004, 557, 215-230.	1.9	34
89	Surface Structure Dependence of the Dry Dehydrogenation of Alcohols on Cu(111) and Cu(110). Journal of Physical Chemistry C, 2017, 121, 12800-12806.	3.1	34
90	Reactivity of Sulfur-Containing Molecules on Noble Metal Surfaces. 4. Benzenethiol on Au(110). Journal of the American Chemical Society, 1994, 116, 3020-3027.	13.7	33

#	Article	IF	CITATIONS
91	Real-Time Observation of Surface Reactivity and Mobility with Scanning Tunneling Microscopy. Accounts of Chemical Research, 2003, 36, 471-480.	15.6	33
92	Structure Sensitivity in the Partial Oxidation of Styrene, Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals. Journal of Physical Chemistry C, 2007, 111, 3675-3679.	3.1	33
93	Cesium Promotion in Styrene Epoxidation on Silver Catalysts. Journal of the American Chemical Society, 2010, 132, 434-435.	13.7	33
94	Surface-mediated cycloaddition: 1,4-addition of atomically adsorbed oxygen to 1,3-butadiene on silver(110). Journal of the American Chemical Society, 1991, 113, 9848-9851.	13.7	32
95	Surface corrugation effects: molecular ethane adsorption dynamics on rigid adsorbate-covered surfaces of Pt(111). Surface Science, 1998, 395, 148-167.	1.9	32
96	The adsorption dynamics of molecular carbon dioxide on Pt() and Pd(). Surface Science, 2002, 497, 356-372.	1.9	32
97	Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu(110): Cleavage of unactivated Cî—,H bonds on metal surfaces. Surface Science, 1989, 214, 396-406.	1.9	31
98	Partial oxidation of hydrocarbons on silver: conversion of 1-butene to maleic anhydride by atomically adsorbed oxygen on Ag(110). Surface Science, 1991, 253, 13-23.	1.9	31
99	The kinetic isotope effect for C-H bond activation on Cu(110): the effects of tunnelling. Surface Science, 1992, 277, 246-252.	1.9	31
100	Atom-resolved investigation of surface reactions: ammonia and oxygen on Cu(110) at 300 and 400 K. Faraday Discussions, 1996, 105, 139.	3.2	31
101	Direct dissociative chemisorption of alkanes on Pt(111): Influence of molecular complexity. Journal of Chemical Physics, 2000, 112, 396-407.	3.0	31
102	Adsorption and reaction of sulfur dioxide with Cu(110) and Cu(110)-p(2×1)-O. Journal of Chemical Physics, 2002, 116, 4698-4706.	3.0	31
103	Activated Metallic Gold as an Agent for Direct Methoxycarbonylation. Journal of the American Chemical Society, 2011, 133, 20378-20383.	13.7	31
104	The mechanism of acetate oxidation on Ag(110). Surface Science, 1986, 172, 598-614.	1.9	30
105	Monolayer structure of phenoxy species on Cu(110): an STM study. Surface Science, 1995, 341, L1065-L1071.	1.9	30
106	Surface microstructure effects: molecular ethane adsorption dynamics on Pt(110)-(1 × 2). Surface Science, 1996, 365, 683-700.	1.9	30
107	Hydrogenation of Weakly Rehybridized Ethylene on Fe(100)â^'H:Â Ethyl Group Formation. Journal of the American Chemical Society, 1996, 118, 5062-5067.	13.7	30
108	Reactivity of Stoichiometric and Defective TiO2(110) Surfaces toward DCOOD Decomposition. Journal of Physical Chemistry B, 2003, 107, 11709-11720.	2.6	30

#	Article	IF	CITATIONS
109	Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of Câ•C Unsaturation on Reaction Selectivity. ACS Catalysis, 2016, 6, 1833-1839.	11.2	30
110	The Adsorption Dynamics of Molecular Methane, Propane, and Neopentane on Pd(111):Â Theory and Experimentâ€. Journal of Physical Chemistry B, 2002, 106, 8248-8257.	2.6	29
111	New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid‶emplated Silica. Chemistry - A European Journal, 2018, 24, 1833-1837.	3.3	29
112	Chemical relaxation molecular beam studies of reactive gas-solid scattering. Surface Science, 1971, 24, 288-301.	1.9	28
113	Oxidation of tert-butyl alcohol to isobutylene oxide: rate-limiting carbon-hydrogen activation by a Ag(110) surface. Journal of the American Chemical Society, 1987, 109, 8082-8083.	13.7	28
114	The adsorption and reaction of 1,2-propanediol on Ag(110) under oxygen lean conditions. Surface Science, 1994, 303, 279-296.	1.9	28
115	Hydrogen migration at restructuring palladium–silver oxide boundaries dramatically enhances reduction rate of silver oxide. Nature Communications, 2020, 11, 1844.	12.8	28
116	The kinetics and mechanism of catalytic reactions by molecular beam relaxation spectroscopy: HCOOH decomposition. Surface Science, 1977, 65, 287-313.	1.9	27
117	The growth of vanadium oxide on alumina and titania single crystal surfaces. Faraday Discussions, 1999, 114, 67-84.	3.2	27
118	Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4×4)-O surface with CO. Journal of Chemical Physics, 2007, 126, 084707.	3.0	27
119	Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22657-22664.	7.1	26
120	Reactivity of Sulfur-Containing Molecules on Noble Metal Surfaces. 2. tert-Butyl Thioalcohol on Au(110). Journal of the American Chemical Society, 1994, 116, 3012-3019.	13.7	25
121	A variable temperature scanning tunneling microscope for the study of surface reactions in ultrahigh vacuum. Review of Scientific Instruments, 1995, 66, 4552-4556.	1.3	25
122	Competitive Reactions of Atomic Oxygen with Acetone on Ag(110): Nucleophilicity Versus Basicity. Journal of the American Chemical Society, 1995, 117, 2301-2312.	13.7	25
123	The dynamical origin of non-normal energy scaling and the effect of surface temperature on the trapping of low molecular weight alkanes on Pt(111). Surface Science, 1997, 380, 489-496.	1.9	25
124	Reactivity of methanol on TiO2 nanoparticles supported on the Au(111) surface. Surface Science, 2005, 591, 1-12.	1.9	25
125	Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catalysis, 2021, 11, 6971-6981.	11.2	25
126	The dynamics of precursor adsorption: ethane on Pt(111). Surface Science, 1990, 237, L424-L431.	1.9	24

#	Article	IF	CITATIONS
127	Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. Journal of Catalysis, 2019, 380, 366-374.	6.2	24
128	Oxidative coupling and ring opening of furan on silver(110): formation of maleic anhydride, benzene, and bifuran. Journal of the American Chemical Society, 1993, 115, 729-736.	13.7	23
129	Alkene and Arene Combustion on Pd(111). Journal of Catalysis, 1998, 178, 520-532.	6.2	23
130	Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface. Nature Communications, 2016, 7, 13139.	12.8	23
131	Reactions of weak organic acids with oxygen atoms on Ag(100): Facile and selective conversion of cyclohexene to benzene. Surface Science, 1990, 226, L71-L78.	1.9	22
132	ï€, ï€-allyl, and trimethylenemethane complexes derived from isobutylene adsorption on oxygen-activated Ag(110). Surface Science, 1992, 262, 51-67.	1.9	22
133	Site blocking by hydrogen: CO on clean and H-presaturated Fe(100). Surface Science, 1992, 271, 81-84.	1.9	22
134	The effect of site distribution on desorption kinetics: carbon monoxide from Ni(100). Surface Science, 1994, 301, 83-88.	1.9	22
135	Trapping dynamics of isobutane, n-butane, and neopentane on Pt(111): Effects of molecular weight and structure. Journal of Chemical Physics, 1999, 110, 10585-10598.	3.0	22
136	Oxidation of Styrene and Phenylacetaldehyde on Ag(111):  Evidence for Transformation of Surface Oxametallacycle. Journal of Physical Chemistry C, 2008, 112, 4725-4734.	3.1	22
137	Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts. Faraday Discussions, 2016, 188, 57-67.	3.2	22
138	The application of flash desorption spectroscopy to chemical reactions on surfaces: Temperature programmed reaction spectroscopy. Critical Reviews in Solid State and Materials Sciences, 1978, 7, 143-152.	12.3	21
139	Determination of adsorbate coverages by leed and XPS. Journal of Electron Spectroscopy and Related Phenomena, 1980, 20, 281-287.	1.7	21
140	Surface corrugation effects on the adsorption dynamics of xenon on Pt(110)â^(1 × 2). Surface Science, 1993, 297, L148-L155.	1.9	21
141	Cî—,C and Cî—,H bond activation of 1,2-propanedioxy by atomic oxygen on Ag(110): Effects of CO-adsorbed oxygen on reaction mechanism. Surface Science, 1994, 303, 297-311.	1.9	21
142	Alkane activation via precursor-mediated dissociation on Ir(110). Surface Science, 1995, 323, 1-5.	1.9	21
143	Site-specific reactivity of oxygen at Cu(110) step defects: an STM study of ammonia dehydrogenation. Surface Science, 1996, 367, L95-L101.	1.9	21
144	Direct collisionally activated and trapping-mediated dissociative chemisorption of neopentane on clean Pt(111): the activity of surface defect sites. Surface Science, 1997, 393, 150-161.	1.9	21

#	Article	IF	CITATIONS
145	Kinetics of hydroxyl recombination on clean and oxygen-covered silver(110). Langmuir, 1985, 1, 526-528.	3.5	20
146	Kinetic isotope effect in direct ethane dissociation on Pt(111). Surface Science, 1993, 294, 420-428.	1.9	20
147	Anomalous effects of weak chemisorption on desorption kinetics of alkenes: The desorption of propylene and propane from Ag(110). Journal of Chemical Physics, 1996, 104, 1699-1708.	3.0	20
148	Dualâ€Function of Alcohols in Goldâ€Mediated Selective Coupling of Amines and Alcohols. Chemistry - A European Journal, 2012, 18, 2313-2318.	3.3	20
149	The surface intermediate H2COO. Applications of Surface Science, 1980, 5, 426-428.	1.0	19
150	Reaction of sulfur dioxide with Ag()–p(2×1)-O: a LEED, TPRS, and STM investigation. Surface Science, 2002, 504, 223-234.	1.9	19
151	The adsorption of and reaction of NO2 on Ag(111)-p(4×4)-O and formation of surface nitrate. Surface Science, 2005, 587, 193-204.	1.9	19
152	A paradigm for predicting selective oxidation on noble metals: oxidative catalytic coupling of amines and aldehydes on metallic gold. Faraday Discussions, 2011, 152, 241.	3.2	19
153	Butyrophenone on O-TiO ₂ (110): One-Dimensional Motion in a Weakly Confined Potential Well. ACS Nano, 2012, 6, 2925-2930.	14.6	19
154	Switching Selectivity in Oxidation Reactions on Gold: The Mechanism of C–C vs C–H Bond Activation in the Acetate Intermediate on Au(111). ACS Catalysis, 2014, 4, 3281-3288.	11.2	19
155	Tuning the Stability of Surface Intermediates Using Adsorbed Oxygen: Acetate on Au(111). Journal of Physical Chemistry Letters, 2014, 5, 1126-1130.	4.6	19
156	Chemisorption-Induced Changes in the X-Ray-Absorption Fine Structure of Adsorbed Species. Physical Review Letters, 1991, 67, 1653-1656.	7.8	18
157	Topographic nano-restructuring: sulfur dioxide adsorption on Cu(). Surface Science, 2003, 524, L84-L88.	1.9	18
158	Imaging Surface Reactions at Atomic Resolution:Â A Wealth of Behavior on the Nanoscale. Journal of Physical Chemistry B, 2003, 107, 3105-3116.	2.6	18
159	Two-dimensional condensation anisotropic crystallization: H2/Ni(110). Surface Science, 2004, 557, 231-242.	1.9	18
160	Methyl ester synthesis catalyzed by nanoporous gold: from 10 ^{â^'9} Torr to 1 atm. Catalysis Science and Technology, 2015, 5, 1299-1306.	4.1	18
161	A Comparative Ab Initio Study of Anhydrous Dehydrogenation of Linear-Chain Alcohols on Cu(110). Journal of Physical Chemistry C, 2018, 122, 7806-7815.	3.1	18
162	A study of the gaseous etching of germanium by oxygen. Surface Science, 1967, 7, 109-124.	1.9	17

#	Article	IF	CITATIONS
163	Surface-mediated isomerization and oxidation of allyl alcohol on copper(110). Journal of the American Chemical Society, 1989, 111, 4553-4561.	13.7	17
164	The effect of hydrogen on the dynamics of the molecular adsorption of ethane on Pt(111). Surface Science, 1994, 303, 312-318.	1.9	17
165	General Effect of van der Waals Interactions on the Stability of Alkoxy Intermediates on Metal Surfaces. Journal of Physical Chemistry B, 2018, 122, 555-560.	2.6	17
166	Dissecting the Performance of Nanoporous Gold Catalysts for Oxygen-Assisted Coupling of Methanol with Fundamental Mechanistic and Kinetic Information. ACS Catalysis, 2019, 9, 4477-4487.	11.2	17
167	Water facilitates oxygen migration on gold surfaces. Physical Chemistry Chemical Physics, 2018, 20, 2196-2204.	2.8	17
168	The mechanism of formate oxidation on Ag(110). Surface Science, 1986, 176, 415-424.	1.9	16
169	The effect of subsurface oxygen on the orientation of molecular oxygen on Ag(110). Surface Science, 1995, 339, 23-28.	1.9	16
170	The molecular adsorption of ethane on sulfur- and ethylidyne-covered surfaces of Pt(111). Surface Science, 1996, 364, 325-334.	1.9	16
171	Origin of vinylic Cî—,H bond activation in the combustion of alkenes on palladium: an HREELS study of propene on Pd(100)-p(2 × 2)-O. Surface Science, 1997, 391, L1165-L1171.	1.9	16
172	Role of Surface-Bound Intermediates in the Oxygen-Assisted Synthesis of Amides by Metallic Silver and Gold. Journal of the American Chemical Society, 2012, 134, 12604-12610.	13.7	16
173	Controlling O coverage and stability by alloying Au and Ag. Physical Chemistry Chemical Physics, 2016, 18, 26844-26853.	2.8	16
174	Coadsorption of CO and CH3O on Ni(100). Surface Science, 1997, 375, 268-280.	1.9	15
175	Molecular dynamics simulations for xenon adsorption on Pt(111): dynamical differences in the effects produced by the Barker-Rettner and Morse potentials. Surface Science, 1997, 391, 150-160.	1.9	15
176	Coverage dependence of neopentane trapping dynamics on Pt(111). Surface Science, 1998, 400, 11-18.	1.9	15
177	Catalyst design for enhanced sustainability through fundamental surface chemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150077.	3.4	15
178	Lateral interactions in the desorption kinetics of weakly adsorbed species: unexpected differences in the desorption of C4 alkenes and alkanes from Ag(110) due to oriented π-bonding of the alkenes. Surface Science, 1995, 339, 8-22.	1.9	14
179	Mass and lattice effects in trapping: Ar, Kr, and Xe on Pt(111), Pd(111), and Ni(111). Surface Science, 2004, 565, 70-80.	1.9	14
180	The Role of Surface Deconstruction in the Autocatalytic Decomposition of Formate and Acetate on Ni(110)â€. Journal of Physical Chemistry B, 2004, 108, 14374-14383.	2.6	14

#	Article	IF	CITATIONS
181	Facile Ester Synthesis on Ag-Modified Nanoporous Au: Oxidative Coupling of Ethanol and 1-Butanol Under UHV Conditions. Catalysis Letters, 2015, 145, 1217-1223.	2.6	14
182	CO/H2 surface complex on W(100). Surface Science, 1978, 77, L379-L383.	1.9	13
183	Ligand and cluster effects in the decomposition of formic acid on copper/nickel (110) single-crystal surfaces. Inorganic Chemistry, 1978, 17, 1103-1108.	4.0	13
184	Surface reactivity: heterogeneous reactions on single crystal surfaces. Accounts of Chemical Research, 1979, 12, 265-270.	15.6	13
185	In situ STM imaging of ammonia oxydehydrogenation on Cu(110): the reactivity of preadsorbed and transient oxygen species. Surface Science, 1997, 387, 1-10.	1.9	13
186	Dilute Pd-in-Au alloy RCT-SiO2 catalysts for enhanced oxidative methanol coupling. Journal of Catalysis, 2021, 404, 943-953.	6.2	13
187	Hydrocarbon combustion at high oxygen coverage on palladium: a model study on Pd(100). Catalysis Letters, 1996, 39, 1-4.	2.6	12
188	First-Principles Study of Alkoxides Adsorbed on Au(111) and Au(110) Surfaces: Assessing the Roles of Noncovalent Interactions and Molecular Structures in Catalysis. Journal of Physical Chemistry C, 2017, 121, 27905-27914.	3.1	12
189	The dynamic behavior of dilute metallic alloy Pd _x Au _{1â^'x} /SiO ₂ raspberry colloid templated catalysts under CO oxidation. Catalysis Science and Technology, 2021, 11, 4072-4082.	4.1	12
190	Moving from Fundamental Knowledge of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst Performance in Reactors. ACS Catalysis, 2021, 11, 3048-3066.	11.2	12
191	Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110). Chemical Science, 2018, 9, 3759-3766.	7.4	11
192	The prediction of trapping probabilities for ethane by molecular dynamics simulations: scaling from Pt to Pd. Surface Science, 2002, 505, 115-123.	1.9	10
193	Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag(111). Journal of Chemical Physics, 2005, 122, 214718.	3.0	10
194	Strong structure sensitivity in the partial oxidation of styrene on silver single crystals. Surface Science, 2009, 603, 1751-1755.	1.9	10
195	Effect of Frustrated Rotations on the Pre-Exponential Factor for Unimolecular Reactions on Surfaces: A Case Study of Alkoxy Dehydrogenation. Journal of Physical Chemistry C, 2020, 124, 1429-1437.	3.1	10
196	The mechanism of methanol formation and other reactions following formaldehyde adsorption on Ni(110). International Journal of Chemical Kinetics, 1978, 10, 871-882.	1.6	9
197	Coverage and site distribution effects in the desorption of carbon monoxide from sulfur-covered Ni(100). Surface Science, 1995, 339, 29-40.	1.9	9
198	Oxygen-hydrogen and carbon-hydrogen bond activation in cyclohexanol by atomic oxygen on silver (110): alkoxide formation and selective dehydrogenation to cyclohexanone. Langmuir, 1991, 7, 3034-3040.	3.5	8

#	Article	lF	CITATIONS
199	The coadsorption of water and molecular oxygen on Ag(110): absence of Oî—,O bond activation by water. Surface Science, 1992, 273, 121-128.	1.9	8
200	The dissociation-induced displacement of chemisorbed O2 by mobile O atoms and the autocatalytic recombination of O due to chain fragmentation on Ag(110). Surface Science, 2014, 630, 187-194.	1.9	8
201	Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol. Surface Science, 2016, 652, 58-66.	1.9	8
202	The creation of microscopic surface structures by interfacial diffusion of Au and Ag on Ag(110): A XPS and STM study. Surface Science, 2016, 643, 36-44.	1.9	8
203	Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110). Topics in Catalysis, 2018, 61, 299-307.	2.8	8
204	Growth and auto-oxidation of Pd on single-layer AgO _x /Ag(111). Physical Chemistry Chemical Physics, 2020, 22, 6202-6209.	2.8	8
205	Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110). Applications of Surface Science, 1982, 14, 41-46.	1.0	7
206	Non-uniform product inhibition in surface reactions Spatial organization effects in ammonia oxydehydrogenation on Cu(110). Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4197-4200.	1.7	7
207	Collective motion and oscillatory interaction: –Cu–O– and sulfite on Cu(). Surface Science, 2003, 526, L127-L132.	1.9	7
208	An STM Investigation of Sulfur and Alkoxide Adsorption on Ni(100). Journal of Physical Chemistry B, 2005, 109, 11307-11313.	2.6	7
209	Analysis of sulfur-induced selectivity changes for anhydrous methanol dehydrogenation on Ni(100) surfaces. Surface Science, 2013, 613, 58-62.	1.9	7
210	Oxophilicity Drives Oxygen Transfer at a Palladium–Silver Interface for Increased CO Oxidation Activity. ACS Catalysis, 2020, 10, 13878-13889.	11.2	7
211	Tuning reactivity layer-by-layer: formic acid activation on Ag/Pd(111). Chemical Science, 2020, 11, 6492-6499.	7.4	7
212	Dehydrogenation, hydrogenation, exchange and combustion reactions of aromatic hydrocarbons on Pd(100). Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3685.	1.7	6
213	Molecular ethane adsorption dynamics on oxygen-covered Pt(111). Topics in Catalysis, 2000, 14, 63-69.	2.8	6
214	CO-Induced Segregation of Hydrogen into the Subsurface on Ni(110). Journal of Physical Chemistry B, 2004, 108, 7247-7252.	2.6	6
215	Surface microcatalysis by MBRS: Molecular beam waveforms. Surface Science, 1974, 45, 696-698.	1.9	5
216	Surface-Mediated NH and N Addition to Styrene on Ag(110). Journal of the American Chemical Society, 2006, 128, 14266-14267.	13.7	5

#	Article	IF	CITATIONS
217	Alkyl groups as synthetic vehicles in gold-mediated oxidative coupling reactions. Physical Chemistry Chemical Physics, 2013, 15, 3179.	2.8	5
218	Spatially Nonuniform Reaction Rates during Selective Oxidation on Gold. Journal of the American Chemical Society, 2018, 140, 12210-12215.	13.7	5
219	Selective Activation of Methyl C–H Bonds of Toluene by Oxygen on Metallic Gold. Catalysis Letters, 2018, 148, 1985-1989.	2.6	5
220	Oxygen adsorption on spontaneously reconstructed Au(511). Surface Science, 2019, 679, 296-303.	1.9	5
221	Predicting a Sharp Decline in Selectivity for Catalytic Esterification of Alcohols from van der Waals Interactions. Angewandte Chemie, 2020, 132, 10956-10959.	2.0	5
222	Predicting a Sharp Decline in Selectivity for Catalytic Esterification of Alcohols from van der Waals Interactions. Angewandte Chemie - International Edition, 2020, 59, 10864-10867.	13.8	5
223	Aromatization of 1,3,5,7-cyclooctatetraene and oxydehydrogenation of cis-cyclooctene, 1,5-cyclooctadiene and 1,3,5,7-cyclooctatetraene on clean and oxygen precovered Ag(110). Surface Science, 1996, 365, 701-728.	1.9	4
224	Roles of Oxyanions in Promoting the Partial Oxidation of Styrene on Ag(110): Nitrate, Carbonate, Sulfite, and Sulfate. Langmuir, 2010, 26, 16282-16286.	3.5	4
225	Gold's enigmatic surface. Nature, 2011, 479, 482-483.	27.8	4
226	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	3.2	4
227	Quantifying oxygen induced surface enrichment of a dilute PdAu alloy catalyst. Catalysis Science and Technology, 2021, 11, 7530-7534.	4.1	4
228	Reaction of sulfur dioxide with Ni(100) and Ni(100)-p(2×2)-O. Surface Science, 2005, 592, 141-149.	1.9	3
229	Bridging model and real catalysts: general discussion. Faraday Discussions, 2016, 188, 565-589.	3.2	3
230	Toward benchmarking theoretical computations of elementary rate constants on catalytic surfaces: formate decomposition on Au and Cu. Chemical Science, 2022, 13, 804-815.	7.4	3
231	Surface reactivity and surface spectroscopies. Ultramicroscopy, 1989, 31, 58-66.	1.9	2
232	Catalyst design from theory to practice: general discussion. Faraday Discussions, 2016, 188, 279-307.	3.2	2
233	The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition. Catalysis Letters, 2022, 152, 3066-3075.	2.6	1
234	Exploiting the Liquid Phase to Enhance the Cross-Coupling of Alcohols over Nanoporous Gold Catalysts. ACS Catalysis, 2022, 12, 183-192.	11.2	1

#	Article	IF	CITATIONS
235	Reactions of molecularly adsorbed oxygen on metals: Carbon monoxide and sulfur dioxide reactions with oxygen on Ag(110). Surface Science Letters, 1989, 209, L151-L156.	0.1	Ο
236	New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica. Chemistry - A European Journal, 2018, 24, 1743-1743.	3.3	0
237	Long-range ordering of stable, surface-bound intermediates: RAIRS, TPRS and STM studies of toluene oxidation on Ag(110). Journal of Lithic Studies, 2018, 4, 1-7.	0.5	Ο