Simon Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3895327/publications.pdf

Version: 2024-02-01

0.5.6	07.000	6606	7511
256	27,093	79	151
papers	citations	h-index	g-index
313	313	313	21256
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 2001, 413, 519-523.	13.7	1,969
2	Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 2002, 418, 869-872.	13.7	1,481
3	Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 2011, 43, 585-589.	9.4	1,080
4	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	13.7	772
5	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
6	A common molecular basis for three inherited kidney stone diseases. Nature, 1996, 379, 445-449.	13.7	694
7	A Functional Genetic Link between Distinct Developmental Language Disorders. New England Journal of Medicine, 2008, 359, 2337-2345.	13.9	626
8	A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice. Cell, 2009, 137, 961-971.	13.5	555
9	FOXP2 as a molecular window into speech and language. Trends in Genetics, 2009, 25, 166-177.	2.9	476
10	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
11	Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 1998, 18, 168-170.	9.4	447
12	Identification of FOXP2 Truncation as a Novel Cause of Developmental Speech and Language Deficits. American Journal of Human Genetics, 2005, 76, 1074-1080.	2.6	438
13	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	2.4	365
14	FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 2003, 126, 2455-2462.	3.7	313
15	Developmental dyslexia: genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 2002, 3, 767-780.	4.9	305
16	A Genomewide Scan for Loci Involved in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 2002, 70, 1183-1196.	2.6	304
17	Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits. Current Biology, 2008, 18, 354-362.	1.8	304
18	LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 2007, 12, 1129-1139.	4.1	300

#	Article	IF	Citations
19	Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5154-E5163.	3.3	299
20	A Genomewide Scan Identifies Two Novel Loci Involved in Specific Language Impairment**Members of the consortium are listed in the Appendix American Journal of Human Genetics, 2002, 70, 384-398.	2.6	267
21	The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 2006, 7, 9-20.	7.7	265
22	Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain. American Journal of Human Genetics, 2007, 81, 1144-1157.	2.6	262
23	A Quantitative-Trait Locus on Chromosome 6p Influences Different Aspects of Developmental Dyslexia. American Journal of Human Genetics, 1999, 64, 146-156.	2.6	260
24	Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain. PLoS Genetics, 2011, 7, e1002145.	1.5	256
25	FOXP2 in focus: what can genes tell us about speech and language?. Trends in Cognitive Sciences, 2003, 7, 257-262.	4.0	253
26	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
27	Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 2002, 30, 86-91.	9.4	240
28	On the other hand: including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 2014, 15, 193-201.	4.9	240
29	High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders. American Journal of Human Genetics, 2007, 81, 1232-1250.	2.6	232
30	A 77-Kilobase Region of Chromosome 6p22.2 Is Associated with Dyslexia in Families From the United Kingdom and From the United States. American Journal of Human Genetics, 2004, 75, 1046-1058.	2.6	222
31	The SPCH1 Region on Human 7q31: Genomic Characterization of the Critical Interval and Localization of Translocations Associated with Speech and Language Disorder. American Journal of Human Genetics, 2000, 67, 357-368.	2.6	214
32	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
33	Genetic Linkage of Attention-Deficit/Hyperactivity Disorder on Chromosome 16p13, in a Region Implicated in Autism. American Journal of Human Genetics, 2002, 71, 959-963.	2.6	210
34	A Genomewide Scan for Attention-Deficit/Hyperactivity Disorder in an Extended Sample: Suggestive Linkage on 17p11. American Journal of Human Genetics, 2003, 72, 1268-1279.	2.6	206
35	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	7.1	204
36	Investigation of Dyslexia and SLI Risk Variants in Reading- and Language-Impaired Subjects. Behavior Genetics, 2011, 41, 90-104.	1.4	200

#	Article	IF	CITATIONS
37	FOXP2 Is Not a Major Susceptibility Gene for Autism or Specific Language Impairment. American Journal of Human Genetics, 2002, 70, 1318-1327.	2.6	197
38	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	9.4	192
39	Tangled webs: Tracing the connections between genes and cognition. Cognition, 2006, 101, 270-297.	1.1	185
40	Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis. Schizophrenia Bulletin, 2015, 41, 1133-1142.	2.3	183
41	CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment. American Journal of Human Genetics, 2009, 85, 264-272.	2.6	173
42	ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, 2017, 145, 389-408.	2.1	173
43	A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nature Genetics, 2001, 27, 439-441.	9.4	171
44	Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 2019, 10, 4958.	5.8	167
45	Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 2006, 15, 3154-3167.	1.4	159
46	<i>CNTNAP2</i> variants affect early language development in the general population. Genes, Brain and Behavior, 2011, 10, 451-456.	1.1	158
47	Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14253-14258.	3.3	156
48	Cloning and Characterization of CLCN5, the Human Kidney Chloride Channel Gene Implicated in Dent Disease (an X-Linked Hereditary Nephrolithiasis). Genomics, 1995, 29, 598-606.	1.3	148
49	Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Human Molecular Genetics, 1997, 6, 1233-1239.	1.4	148
50	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	1.1	144
51	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 431-451.	1.9	143
52	Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 2006, 11, 1085-1091.	4.1	140
53	DECIPHERING THE GENETIC BASIS OF SPEECH AND LANGUAGE DISORDERS. Annual Review of Neuroscience, 2003, 26, 57-80.	5.0	135
54	Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill. PLoS Genetics, 2013, 9, e1003751.	1.5	129

#	Article	IF	CITATIONS
55	An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Molecular Psychiatry, 2012, 17, 1077-1085.	4.1	122
56	Attention Deficit Hyperactivity Disorder: Fine Mapping Supports Linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics, 2004, 75, 661-668.	2.6	121
57	Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait. American Journal of Human Genetics, 2003, 72, 561-570.	2.6	119
58	Molecular Genetics of Dyslexia: An Overview. Dyslexia, 2013, 19, 214-240.	0.8	119
59	BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. American Journal of Human Genetics, 2016, 99, 253-274.	2.6	118
60	Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Human Molecular Genetics, 1994, 3, 2053-9.	1.4	116
61	Decoding the genetics of speech and language. Current Opinion in Neurobiology, 2013, 23, 43-51.	2.0	114
62	Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 2015, 62, 41-55.	1.1	114
63	Genomeâ€wide screening for <scp>DNA</scp> variants associated with reading and language traits. Genes, Brain and Behavior, 2014, 13, 686-701.	1.1	112
64	A Genomewide Linkage Screen for Relative Hand Skill in Sibling Pairs. American Journal of Human Genetics, 2002, 70, 800-805.	2.6	111
65	De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 2014, 5, 4954.	5.8	109
66	ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties. Molecular Psychiatry, 2018, 23, 263-270.	4.1	107
67	A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 2019, 24, 1065-1078.	4.1	106
68	Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 2010, 19, 4848-4860.	1.4	103
69	Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 2014, 5, 261.	1.1	103
70	Is synaesthesia more common in autism?. Molecular Autism, 2013, 4, 40.	2.6	99
71	Genes, cognition and dyslexia: learning to read the genome. Trends in Cognitive Sciences, 2006, 10, 250-257.	4.0	96
72	The structure of innate vocalizations in <i>Foxp2</i> â€deficient mouse pups. Genes, Brain and Behavior, 2010, 9, 390-401.	1.1	92

#	Article	IF	Citations
73	Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 2004, 41, 853-857.	1.5	91
74	Genetic and phenotypic effects of phonological shortâ€term memory and grammatical morphology in specific language impairment. Genes, Brain and Behavior, 2008, 7, 393-402.	1.1	91
75	Understanding Language from a Genomic Perspective. Annual Review of Genetics, 2015, 49, 131-160.	3.2	91
76	Mapping brain asymmetry in health and disease through the <scp>ENIGMA</scp> consortium. Human Brain Mapping, 2022, 43, 167-181.	1.9	89
77	FOXP2 Targets Show Evidence of Positive Selection in European Populations. American Journal of Human Genetics, 2013, 92, 696-706.	2.6	88
78	A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice. Frontiers in Behavioral Neuroscience, 2016, 10, 197.	1.0	88
79	Neandertal Introgression Sheds Light on Modern Human Endocranial Globularity. Current Biology, 2019, 29, 120-127.e5.	1.8	86
80	Generation of mice with a conditional <i>Foxp2</i> null allele. Genesis, 2007, 45, 440-446.	0.8	84
81	Confirmatory Evidence for Linkage of Relative Hand Skill to 2p12-q11. American Journal of Human Genetics, 2003, 72, 499-501.	2.6	83
82	Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2005, 46, 1045-1056.	3.1	83
83	Singing Mice, Songbirds, and More: Models for FOXP2 Function and Dysfunction in Human Speech and Language. Journal of Neuroscience, 2006, 26, 10376-10379.	1.7	82
84	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	2.4	82
85	Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Molecular Psychiatry, 2020, 25, 3053-3065.	4.1	80
86	Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Scientific Reports, 2017, 7, 46105.	1.6	79
87	Recent advances in the genetics of language impairment. Genome Medicine, 2010, 2, 6.	3.6	76
88	Genomeâ€wide association analyses of child genotype effects and parentâ€ofâ€origin effects in specific language impairment. Genes, Brain and Behavior, 2014, 13, 418-429.	1.1	76
89	Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 2022, 43, 470-499.	1.9	76
90	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	7.1	75

#	Article	IF	Citations
91	Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, 2017, 8, 18.	2.6	73
92	Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects. Molecular Psychiatry, 2004, 9, 485-493.	4.1	72
93	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 452-469.	1.9	72
94	CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature Communications, 2018, 9, 4619.	5.8	70
95	The genetic architecture of structural left–right asymmetry of the human brain. Nature Human Behaviour, 2021, 5, 1226-1239.	6.2	70
96	Identification and functional characterization of <i>de novo FOXP1 </i> variants provides novel insights into the etiology of neurodevelopmental disorder. Human Molecular Genetics, 2016, 25, 546-557.	1.4	69
97	Severe childhood speech disorder. Neurology, 2020, 94, e2148-e2167.	1.5	68
98	Associations of HLA alleles with specific language impairment. Journal of Neurodevelopmental Disorders, 2014, 6, 1.	1.5	67
99	Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. Advances in Genetics, 2016, 96, 53-97.	0.8	67
100	Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: quantitative association analysis and positional candidate genes SEMA4F and OTX1. Psychiatric Genetics, 2002, 12, 35-41.	0.6	64
101	Foxp2 Mutations Impair Auditory-Motor Association Learning. PLoS ONE, 2012, 7, e33130.	1.1	64
102	Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Developmental Biology, 2015, 398, 242-254.	0.9	62
103	Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Human Molecular Genetics, 2003, 12, 3225-3230.	1.4	61
104	A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. European Journal of Human Genetics, 2016, 24, 302-306.	1.4	60
105	Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140092.	1.8	59
106	Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion. European Journal of Human Genetics, 2018, 26, 676-686.	1.4	58
107	What can mice tell us about Foxp2 function?. Current Opinion in Neurobiology, 2014, 28, 72-79.	2.0	57
108	Speech and Language: Translating the Genome. Trends in Genetics, 2017, 33, 642-656.	2.9	57

#	Article	IF	CITATIONS
109	Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Scientific Reports, 2018, 8, 12606.	1.6	56
110	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	4.1	56
111	Familial and Genetic Effects on Motor Coordination, Laterality, and Reading-Related Cognition. American Journal of Psychiatry, 2003, 160, 1970-1977.	4.0	55
112	Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13. Molecular Psychiatry, 2006, 11, 5-8.	4.1	55
113	Left–Right Asymmetry of Maturation Rates in Human Embryonic Neural Development. Biological Psychiatry, 2017, 82, 204-212.	0.7	55
114	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54
115	Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 2018, 27, 1212-1227.	1.4	53
116	Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 2013, 22, 2097-2104.	1.4	52
117	Multivariate Linkage Analysis of Specific Language Impairment (SLI). Annals of Human Genetics, 2007, 71, 660-673.	0.3	51
118	Exome Sequencing in an Admixed Isolated Population Indicates NFXL1 Variants Confer a Risk for Specific Language Impairment. PLoS Genetics, 2015, 11, e1004925.	1.5	50
119	Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry, 2020, 25, 584-602.	4.1	49
120	Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain and Behavior, 2011, 10, 158-165.	1.1	48
121	Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a $t(X;1)(p11.2;q21.2)$ and the first report of a female case. Cytogenetic and Genome Research, 1995, 71, 280-284.	0.6	47
122	Culture, Genes, and the Human Revolution. Science, 2013, 340, 929-930.	6.0	47
123	Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of <i>Tshz1 < /i> Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes. Journal of Neuroscience, 2018, 38, 1160-1177.</i>	1.7	47
124	Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Molecular Psychiatry, 2018, 23, 1375-1384.	4.1	47
125	Genome-wide analysis identifies a role for common copy number variants in specific language impairment. European Journal of Human Genetics, 2015, 23, 1370-1377.	1.4	46
126	Ultrasonic vocalizations of adult male <i>Foxp2</i> å€mutant mice: behavioral contexts of arousal and emotion. Genes, Brain and Behavior, 2016, 15, 243-259.	1.1	46

#	Article	IF	Citations
127	De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Human Genetics, 2018, 137, 375-388.	1.8	46
128	A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European Journal of Human Genetics, 2015, 23, 1702-1707.	1.4	45
129	Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 2014, 35, 3277-3289.	1.9	43
130	Evolution of language: Lessons from the genome. Psychonomic Bulletin and Review, 2017, 24, 34-40.	1.4	43
131	Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia. Developmental Medicine and Child Neurology, 2014, 56, 346-353.	1.1	42
132	Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8799-8804.	3.3	42
133	The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia, 2015, 58, 1836-1844.	2.9	41
134	Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
135	Genetics and the Language Sciences. Annual Review of Linguistics, 2015, 1, 289-310.	1.2	40
136	Analysis of structural brain asymmetries in attentionâ€deficit/hyperactivity disorder in 39 datasets. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1202-1219.	3.1	40
137	Assessing the impact of FOXP1 mutations on developmental verbal dyspraxia. European Journal of Human Genetics, 2009, 17, 1354-1358.	1.4	39
138	The DISC1 promoter: characterization and regulation by FOXP2. Human Molecular Genetics, 2012, 21, 2862-2872.	1.4	39
139	Sequence-Based Exon Prediction around the Synaptophysin Locus Reveals a Gene-Rich Area Containing Novel Genes in Human Proximal Xp. Genomics, 1997, 45, 340-347.	1.3	38
140	The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Scientific Reports, 2016, 6, 20911.	1.6	38
141	Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behavior Genetics, 2001, 31, 219-230.	1.4	37
142	The genetics of situs inversus without primary ciliary dyskinesia. Scientific Reports, 2020, 10, 3677.	1.6	37
143	Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 2013, 21, 361-365.	1.4	36
144	Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 2014, 8, 473.	1.0	36

#	Article	IF	Citations
145	Human Genetics: The Evolving Story of FOXP2. Current Biology, 2019, 29, R65-R67.	1.8	36
146	Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. PLoS Genetics, 2017, 13, e1006683.	1.5	35
147	De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder. American Journal of Human Genetics, 2019, 105, 403-412.	2.6	35
148	Rare variants in axonogenesis genes connect three families with sound–color synesthesia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3168-3173.	3.3	34
149	Molecular cloning of the papillary renal cell carcinoma-associated translocation ($X;1$)(p11;q21) breakpoint. Cytogenetic and Genome Research, 1996, 75, 2-6.	0.6	33
150	Insights into the Genetic Foundations of Human Communication. Neuropsychology Review, 2015, 25, 3-26.	2.5	33
151	Y-chromosomal DNA haplotypes in infertile European males carrying Y-microdeletions. Journal of Endocrinological Investigation, 2000, 23, 671-676.	1.8	32
152	A genomeâ€wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 2014, 13, 675-685.	1.1	31
153	Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 2019, 56, 557-566.	1.5	31
154	Developmental Changes Within the Genetic Architecture of Social Communication Behavior: A Multivariate Study of Genetic Variance in Unrelated Individuals. Biological Psychiatry, 2018, 83, 598-606.	0.7	30
155	Early speech development in Koolen de Vries syndrome limited by oral praxis and hypotonia. European Journal of Human Genetics, 2018, 26, 75-84.	1.4	30
156	Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 2019, 10, 357.	5.8	30
157	Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. American Journal of Human Genetics, 2021, 108, 346-356.	2.6	30
158	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	1.9	30
159	Association analysis of dyslexia candidate genes in a Dutch longitudinal sample. European Journal of Human Genetics, 2017, 25, 452-460.	1.4	29
160	Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Structure and Function, 2017, 222, 1611-1623.	1.2	29
161	Neurogenomics of speech and language disorders: the road ahead. Genome Biology, 2013, 14, 204.	13.9	28
162	Equivalent missense variant in the <i>FOXP2</i> and <i>FOXP1</i> transcription factors causes distinct neurodevelopmental disorders. Human Mutation, 2017, 38, 1542-1554.	1.1	28

#	Article	IF	Citations
163	Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 2019, 24, 447-462.	4.1	28
164	Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. European Journal of Human Genetics, 2014, 22, 1165-1171.	1.4	27
165	Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Developmental Biology, 2016, 416, 338-346.	0.9	27
166	A Genome Wide Association Study of Mathematical Ability Reveals an Association at Chromosome 3q29, a Locus Associated with Autism and Learning Difficulties: A Preliminary Study. PLoS ONE, 2014, 9, e96374.	1.1	27
167	A Y chromosomal influence on prostate cancer risk: the multi-ethnic cohort study. Journal of Medical Genetics, 2003, 40, 815-819.	1.5	26
168	Functional characterization of rare FOXP2 variants in neurodevelopmental disorder. Journal of Neurodevelopmental Disorders, 2016, 8, 44.	1.5	26
169	Functional characterization of TBR1 variants in neurodevelopmental disorder. Scientific Reports, 2018, 8, 14279.	1.6	26
170	Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS ONE, 2019, 14, e0211652.	1.1	26
171	Genetic effects on planum temporale asymmetry and their limited relevance to neurodevelopmental disorders, intelligence or educational attainment. Cortex, 2020, 124, 137-153.	1.1	26
172	Speech and language deficits are central to SETBP1 haploinsufficiency disorder. European Journal of Human Genetics, 2021, 29, 1216-1225.	1.4	26
173	Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cerebral Cortex, 2021, 31, 4151-4168.	1.6	26
174	Dissection of molecular mechanisms underlying speech and language disorders. Applied Psycholinguistics, 2005, 26, 111-128.	0.8	25
175	Disentangling polygenic associations between attention-deficit/hyperactivity disorder, educational attainment, literacy and language. Translational Psychiatry, 2019, 9, 35.	2.4	25
176	Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. American Journal of Human Genetics, 2020, 107, 727-742.	2.6	25
177	Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 2022, 27, 2114-2125.	4.1	25
178	On Genes, Speech, and Language. New England Journal of Medicine, 2005, 353, 1655-1657.	13.9	24
179	Modified sound-evoked brainstem potentials in Foxp2 mutant mice. Brain Research, 2009, 1289, 30-36.	1.1	24
180	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24

#	Article	IF	CITATIONS
181	Severe speech impairment is a distinguishing feature of <i>FOXP1</i> â€related disorder. Developmental Medicine and Child Neurology, 2021, 63, 1417-1426.	1.1	24
182	The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest. PLoS ONE, 2015, 10, e0128513.	1.1	23
183	High-Resolution Comparative Mapping of the Proximal Region of the Mouse X Chromosome. Genomics, 1995, 28, 305-310.	1.3	22
184	No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure. Schizophrenia Research, 2014, 159, 329-332.	1.1	22
185	Hypomethylation of the paternally inherited <i>LRRTM1</i> promoter linked to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 555-563.	1.1	21
186	Lack of replication for the myosinâ€ <scp>18B</scp> association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 2015, 14, 369-376.	1.1	21
187	Genetic pathways involved in human speech disorders. Current Opinion in Genetics and Development, 2020, 65, 103-111.	1.5	21
188	The Evolutionary History of Common Genetic Variants Influencing Human Cortical Surface Area. Cerebral Cortex, 2021, 31, 1873-1887.	1.6	21
189	Molecular networks of the FOXP2 transcription factor in the brain. EMBO Reports, 2021, 22, e52803.	2.0	21
190	Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions, 2009, 37, 1263-1269.	1.6	20
191	A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain and Language, 2017, 172, 16-21.	0.8	20
192	Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 2018, 223, 4211-4226.	1.2	20
193	A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 2015, 8, 69.	0.4	19
194	A schizophrenia-associated HLA locus affects thalamus volume and asymmetry. Brain, Behavior, and Immunity, 2015, 46, 311-318.	2.0	19
195	Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 2016, 8, 17.	1.5	19
196	Evaluation of results from genomeâ€wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 2016, 15, 531-541.	1.1	19
197	Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 2017, 172, 9-15.	0.8	19
198	Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 2018, 11, 47.	1.4	19

#	Article	IF	Citations
199	A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia). European Child and Adolescent Psychiatry, 1999, 8, S47-S51.	2.8	18
200	Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain, 2022, 145, 1285-1298.	3.7	18
201	Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer. Journal of Visualized Experiments, 2014, , .	0.2	17
202	Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. Brain and Neuroscience Advances, 2020, 4, 239821282096170.	1.8	17
203	Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genetics in Medicine, 2021, 23, 534-542.	1.1	17
204	Molecular Windows into Speech and Language Disorders. Folia Phoniatrica Et Logopaedica, 2007, 59, 130-140.	0.5	16
205	Toward Robust Functional Neuroimaging Genetics of Cognition. Journal of Neuroscience, 2019, 39, 8778-8787.	1.7	16
206	The DCDC2 deletion is not a risk factor for dyslexia. Translational Psychiatry, 2017, 7, e1182-e1182.	2.4	16
207	A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus. PLoS ONE, 2016, 11, e0158036.	1.1	16
208	Gâ€protein genomic association with normal variation in gray matter density. Human Brain Mapping, 2015, 36, 4272-4286.	1.9	15
209	Gene Expression Correlates of the Cortical Network Underlying Sentence Processing. Neurobiology of Language (Cambridge, Mass), 2020, 1, 77-103.	1.7	15
210	Genome sequencing for rightward hemispheric language dominance. Genes, Brain and Behavior, 2019, 18, e12572.	1.1	14
211	The developmental origins of genetic factors influencing language and literacy: Associations with earlyâ€childhood vocabulary. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 728-738.	3.1	14
212	Linkage disequilibrium structure of KIAA0319 and DCDC2, two candidate susceptibility genes for developmental dyslexia. Molecular Psychiatry, 2006, 11, 1061-1061.	4.1	13
213	The Association of Dyslexia and Developmental Speech and Language Disorder Candidate Genes with Reading and Language Abilities in Adults. Twin Research and Human Genetics, 2020, 23, 23-32.	0.3	13
214	Polygenic risk for mental disorder reveals distinct association profiles across social behaviour in the general population. Molecular Psychiatry, 2022, 27, 1588-1598.	4.1	13
215	Genetic Susceptibility to Stuttering. New England Journal of Medicine, 2010, 362, 750-752.	13.9	12
216	Persistence and transmission of recessive deafness and sign language: new insights from village sign languages. European Journal of Human Genetics, 2013, 21, 894-896.	1.4	12

#	Article	IF	CITATIONS
217	Investigating genetic links between grapheme–colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190026.	1.8	12
218	Clinical delineation of SETBP1 haploinsufficiency disorder. European Journal of Human Genetics, 2021, 29, 1198-1205.	1.4	12
219	Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein. Genetics in Medicine, 2022, 24, 2051-2064.	1.1	12
220	Characterization of Novel Promoter and Enhancer Elements of the Mouse Homologue of the Dent Disease Gene, CLCN5, Implicated in X-Linked Hereditary Nephrolithiasis. Genomics, 1999, 58, 281-292.	1.3	11
221	Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Scientific Reports, 2020, 10, 21631.	1.6	11
222	Relationship between Y-chromosomal DNA haplotype and sperm count in Italy. Journal of Endocrinological Investigation, 2002, 25, 993-995.	1.8	10
223	A Pooled Genome-Wide Association Study of Asperger Syndrome. PLoS ONE, 2015, 10, e0131202.	1.1	10
224	Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genetics in Medicine, 2022, 24, 1283-1296.	1.1	9
225	LRRTM1 protein is located in the endoplasmic reticulum (ER) in mammalian cells. Molecular Psychiatry, 2007, 12, 1057-1057.	4.1	8
226	Construction of Two YAC Contigs in Human Xp11.23–p11.22, One Encompassing the Loci OATL1,GATA,TFE3, and SYP, the Other Linking DXS255 to DXS146. Genomics, 1995, 29, 496-502.	1.3	7
227	Selfâ€reported impact of developmental stuttering across the lifespan. Developmental Medicine and Child Neurology, 2022, 64, 1297-1306.	1.1	7
228	<i>CNTNAP2 $$ /i $$ variants affect early language development in the general population. Genes, Brain and Behavior, 2012, 11, 501-501.</i>	1.1	6
229	Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 2016, 37, 1788-1800.	1.9	6
230	A Molecular Genetic Perspective on Speech and Language. , 2016, , 13-24.		5
231	Enhanced self-reported affect and prosocial behaviour without differential physiological responses in mirror-sensory synaesthesia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190395.	1.8	5
232	The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 2021, 17, e1009144.	1.5	5
233	Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Human Genetics, 2021, 140, 1183-1200.	1.8	5
234	Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults. Brain Structure and Function, 2022, 227, 561-572.	1.2	5

#	Article	IF	Citations
235	Isolation of the genetic factors underlying speech and language disorders , 2003, , 205-226.		5
236	A sibling-pair based approach for mapping genetic loci that influence quantitative measures of reading disability. Prostaglandins Leukotrienes and Essential Fatty Acids, 2000, 63, 27-31.	1.0	4
237	Cerebellar developmental deficits underlie neurodegenerative disorder spinocerebellar ataxia type 23. Brain Pathology, 2021, 31, 239-252.	2.1	4
238	Speechâ€language profiles in the context of cognitive and adaptive functioning in SATB2 â€associated syndrome. Genes, Brain and Behavior, 2021, 20, e12761.	1.1	4
239	Genetic Pathways Implicated in Speech and Language. , 2013, , 13-40.		4
240	Generalized Structured Component Analysis in candidate gene association studies: applications and limitations. Wellcome Open Research, 2019, 4, 142.	0.9	4
241	Generalized Structured Component Analysis in candidate gene association studies: applications and limitations. Wellcome Open Research, 2019, 4, 142.	0.9	4
242	Multivariate genome-wide covariance analyses of literacy, language and working memory skills reveal distinct etiologies. Npj Science of Learning, 2021, 6, 23.	1.5	3
243	Translating the Genome in Human Neuroscience. , 2015, , 149-158.		3
244	Reply to Pembrey et al: â€~ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis'. European Journal of Human Genetics, 2015, 23, 1113-1115.	1.4	2
245	Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 2018, , .	1.4	2
246	Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 2017, 172, 1-2.	0.8	1
247	Functional Genomic Dissection of Speech and Language Disorders. Advances in Neurobiology, 2011, , 253-278.	1.3	1
248	MOLECULAR WINDOWS INTO SPEECH AND LANGUAGE., 2012,,.		1
249	GL.03 Molecular windows into speech and language disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, e2-e2.	0.9	O
250	Common Polygenic Risk For ASD And ADHD is Associated with Childhood Linguistic Traits within The General Population, But with Opposite Effects. European Neuropsychopharmacology, 2017, 27, S420-S421.	0.3	0
251	TRAIT-SPECIFIC PATTERNS OF COMMON GENETIC FACTORS INFLUENCE SOCIAL-COMMUNICATION DIFFICULTIES AND ADHD SYMPTOMS DURING CHILD AND ADOLESCENT DEVELOPMENT. European Neuropsychopharmacology, 2017, 27, S379-S380.	0.3	0
252	POLYGENIC RISK FOR ADHD IS ASSOCIATED WITH READING AND SPELLING RELATED TRAITS BEYOND PLEIOTROPIC EFFECTS DUE TO EDUCATIONAL ATTAINMENT. European Neuropsychopharmacology, 2019, 29, S810-S811.	0.3	0

SIMON FISHER

#	Article	IF	CITATIONS
253	Conditional disruption of Foxp2 in the mouse brain. Molecular Psychiatry, 2019, 24, 321-321.	4.1	O
254	Bridging senses: novel insights from synaesthesia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190022.	1.8	0
255	The Genetic Basis of a Severe Speech and Language Disorder. Research and Perspectives in Neurosciences, 2003, , 125-134.	0.4	0
256	How Can Studies of Animals Help to Uncover the Roles of Genes Implicated in Human Speech and Language Disorders?. Contemporary Clinical Neuroscience, 2006, , 127-149.	0.3	0