

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894910/publications.pdf Version: 2024-02-01

		57758	76900
104	6,023	44	74
papers	citations	h-index	g-index
117 all docs	117 docs citations	117 times ranked	6538 citing authors

#	Article	IF	CITATIONS
1	Catalytically active atomically thin cuprate with periodic Cu single sites. National Science Review, 2023, 10, .	9.5	2
2	Visible-light-promoted radical amidoarylation of arylacrylamides towards amidated oxindoles. Organic Chemistry Frontiers, 2022, 9, 2164-2168.	4.5	9
3	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygen ontrolled Activity. Advanced Functional Materials, 2022, 32, .	14.9	13
4	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	13.7	13
5	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	14.6	109
6	A Highâ€Performance Lithium Metal Battery with Ionâ€6elective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	21.0	64
7	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	27.5	102
8	Molecular engineered palladium single atom catalysts with an M-C ₁ N ₃ subunit for Suzuki coupling. Journal of Materials Chemistry A, 2021, 9, 11427-11432.	10.3	18
9	Intrinsic polarization coupling in 2D αâ€In ₂ Se ₃ toward artificial synapse with multimode operations. SmartMat, 2021, 2, 88-98.	10.7	81
10	Outside Front Cover: Volume 2 Issue 1. SmartMat, 2021, 2, i.	10.7	0
11	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	14.6	90
12	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie, 2021, 133, 11460-11470.	2.0	11
13	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	12.8	83
14	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 11359-11369.	13.8	62
15	Visible-Light-Driven Aryl Migration and Cyclization of α-Azido Amides. Organic Letters, 2021, 23, 4527-4531.	4.6	10
16	Visible Light Driven and Copper-Catalyzed C(sp ³)–H Functionalization of <i>O</i> Pentafluorobenzoyl Ketone Oximes. Organic Letters, 2021, 23, 6057-6061.	4.6	16
17	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	21.0	55
18	Atomic Imaging of Electrically Switchable Striped Domains in <i>β</i> ′â€In ₂ Se ₃ . Advanced Science, 2021, 8, e2100713.	11.2	22

#	Article	IF	CITATIONS
19	Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery. Advanced Materials, 2021, 33, e2102083.	21.0	43
20	Photocatalytic <i>Anti</i> â€Markovnikov Radical Hydro―and Aminooxygenation of Unactivated Alkenes Tuned by Ketoxime Carbonates. Angewandte Chemie - International Edition, 2021, 60, 21997-22003.	13.8	38
21	Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy. Advanced Materials, 2021, 33, e2103360.	21.0	84
22	High-Yield Exfoliation of Monolayer 1T'-MoTe ₂ as Saturable Absorber for Ultrafast Photonics. ACS Nano, 2021, 15, 18448-18457.	14.6	28
23	Iron-Catalyzed 1,4-Phenyl Migration/Ring Expansion of α-Azido <i>N</i> -Phenyl Amides. Organic Letters, 2021, 23, 8650-8654.	4.6	6
24	Photoinduced C(sp ³)–H chlorination of amides with tetrabutyl ammonium chloride. Organic and Biomolecular Chemistry, 2021, 19, 10228-10232.	2.8	1
25	Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angewandte Chemie - International Edition, 2020, 59, 3900-3904.	13.8	38
26	Cobalt Singleâ€Atomâ€Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials, 2020, 32, e1906437.	21.0	62
27	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 2020, 5, 3498-3506.	17.4	114
28	Photoinduced Site-Selective C(sp ³)–H Chlorination of Aliphatic Amides. Organic Letters, 2020, 22, 8899-8903.	4.6	11
29	Visibleâ€Lightâ€Driven Remote Câ^'H Chlorination of Aliphatic Sulfonamides with Sodium Hypochlorite. Asian Journal of Organic Chemistry, 2020, 9, 1650-1654.	2.7	17
30	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	10.3	19
31	Iron-catalysed 1,2-aryl migration of tertiary azides. Chemical Communications, 2020, 56, 11685-11688.	4.1	10
32	Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices. Advanced Materials, 2020, 32, e1907645.	21.0	25
33	Can Reconstructed Seâ€Deficient Line Defects in Monolayer VSe ₂ Induce Magnetism?. Advanced Materials, 2020, 32, e2000693.	21.0	87
34	Preparation of Oxindoles via Visibleâ€Lightâ€Induced Amination/Cyclization of Arylacrylamides with Alkyl Amines. Advanced Synthesis and Catalysis, 2020, 362, 3116-3120.	4.3	22
35	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. ACS Nano, 2020, 14, 7628-7638.	14.6	106
36	Domain Engineering in ReS ₂ by Coupling Strain during Electrochemical Exfoliation. Advanced Functional Materials, 2020, 30, 2003057.	14.9	22

#	Article	IF	CITATIONS
37	Nonâ€Interpenetrated Singleâ€Crystal Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 17991-17995.	13.8	60
38	Iron–Phosphine Complex-Catalyzed Intramolecular C(sp ³)–H Amination of Azides. Organic Letters, 2020, 22, 1961-1965.	4.6	32
39	Rapid, Scalable Construction of Highly Crystalline Acylhydrazone Two-Dimensional Covalent Organic Frameworks via Dipole-Induced Antiparallel Stacking. Journal of the American Chemical Society, 2020, 142, 4932-4943.	13.7	99
40	Room Temperature Commensurate Charge Density Wave on Epitaxially Grown Bilayer 2H-Tantalum Sulfide on Hexagonal Boron Nitride. ACS Nano, 2020, 14, 3917-3926.	14.6	27
41	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	12.8	40
42	Activating Basal Planes of NiPS ₃ for Hydrogen Evolution by Nonmetal Heteroatom Doping. Advanced Functional Materials, 2020, 30, 1908708.	14.9	96
43	Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angewandte Chemie, 2020, 132, 3928-3932.	2.0	10
44	Visible Light-Driven Azidation/Difunctionalization of Vinyl Arenes with Azidobenziodoxole under Copper Catalysis. Journal of Organic Chemistry, 2019, 84, 10978-10989.	3.2	38
45	Chemically Exfoliated VSe ₂ Monolayers with Roomâ€Temperature Ferromagnetism. Advanced Materials, 2019, 31, e1903779.	21.0	251
46	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rGO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	19.5	101
47	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. Nano Letters, 2019, 19, 5109-5117.	9.1	129
48	Hydrosulfonylation of Unactivated Alkenes by Visible Light Photoredox Catalysis. Organic Letters, 2019, 21, 9236-9240.	4.6	54
49	From All-Triazine C ₃ N ₃ Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. ACS Applied Nano Materials, 2019, 2, 7969-7977.	5.0	49
50	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e190	58 29. 0	129
51	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2019, 141, 15972-15976.	13.7	113
52	Silver-Catalyzed Site-Selective Ring-Opening and C–C Bond Functionalization of Cyclic Amines: Access to Distal Aminoalkyl-Substituted Quinones. Organic Letters, 2019, 21, 4590-4594.	4.6	23
53	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9543-9547.	2.0	20
54	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9443-9447.	13.8	81

#	Article	IF	CITATIONS
55	Iron-Catalyzed Intramolecular C–H Amination of α-Azidyl Amides. Organic Letters, 2019, 21, 1559-1563.	4.6	36
56	4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols with Oxime Acetates toward Pyridine Derivatives. ACS Catalysis, 2019, 9, 4179-4188.	11.2	81
57	Iron-catalysed 1,2-acyl migration of tertiary α-azido ketones and 2-azido-1,3-dicarbonyl compounds. Green Chemistry, 2019, 21, 6097-6102.	9.0	12
58	Antiâ€Markovnikov Hydroazidation of Alkenes by Visible‣ight Photoredox Catalysis. Chemistry - A European Journal, 2019, 25, 3510-3514.	3.3	25
59	Synthesis of Halomethyl Isoxazoles/Cyclic Nitrones via Cascade Sequence: 1,2-Halogen Radical Shift as a Key Link. Organic Letters, 2018, 20, 2906-2910.	4.6	34
60	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	13.7	555
61	Iron-Catalyzed Acyl Migration of Tertiary α-Azidyl Ketones: Synthetic Approach toward Enamides and Isoquinolones. Organic Letters, 2018, 20, 1875-1879.	4.6	38
62	Visible light-promoted tandem azidation/cyclization of N-arylenamines towards quinoxalines. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 382-388.	3.9	4
63	Surface-Limited Superconducting Phase Transition on 1 <i>T</i> -TaS ₂ . ACS Nano, 2018, 12, 12619-12628.	14.6	54
64	Cu-Catalyzed Radical Cascade Annulations of Alkyne-Tethered <i>N</i> -Alkoxyamides with Air: Facile Access to Isoxazolidine/1,2-Oxazinane-Fused Isoquinolin-1(2 <i>H</i>)-ones. ACS Catalysis, 2018, 8, 8925-8931.	11.2	44
65	Iminoxyl Radical-Promoted Oxycyanation and Aminocyanation of Unactivated Alkenes: Synthesis of Cyano-Featured Isoxazolines and Cyclic Nitrones. Organic Letters, 2017, 19, 3255-3258.	4.6	67
66	Synthesis of quinazolinones via radical cyclization of α-azidyl benzamides. Organic Chemistry Frontiers, 2017, 4, 421-426.	4.5	17
67	Dioxygen Activation via Cu-Catalyzed Cascade Radical Reaction: An Approach to Isoxazoline/Cyclic Nitrone-Featured α-Ketols. ACS Catalysis, 2017, 7, 7830-7834.	11.2	67
68	Copper-Catalyzed Cascade Cyclization of 1,7-Enynes toward Trifluoromethyl-Substituted 1′ <i>H</i> -Spiro[azirine-2,4′-quinolin]-2′(3′ <i>H</i>)-ones. Organic Letters, 2017, 19, 5186-5189.	4.6	38
69	A Domino Azidation/C–H Amination Approach toward Trifluoromethyl Substituted Imidazoles. Journal of Organic Chemistry, 2017, 82, 11841-11847.	3.2	25
70	tert-Butyl Hypochlorite Induced Cyclization of Ethyl 2-(N-ArylÂcarbamoyl)-2-iminoacetates. Synthesis, 2017, 49, 4283-4291.	2.3	8
71	tert-Butyl nitrite-mediated vicinal sulfoximation of alkenes with sulfinic acids: a highly efficient approach toward α-sulfonyl ketoximes. Organic Chemistry Frontiers, 2017, 4, 135-139.	4.5	49
72	Copper-Catalyzed Oxidative Oxyamination/Diamination of Internal Alkenes of Unsaturated Oximes with Simple Amines. ACS Catalysis, 2016, 6, 6525-6530.	11.2	129

#	Article	IF	CITATIONS
73	Synthesis of Quinoxaline Derivatives via Tandem Oxidative Azidation/Cyclization Reaction of <i>N</i> -Arylenamines. Organic Letters, 2016, 18, 868-871.	4.6	52
74	Copper-catalyzed radical reactions of 2-azido-N-arylacrylamides with 1-(trifluoromethyl)-1,2-benziodoxole and 1-azidyl-1,2-benziodoxole. Organic and Biomolecular Chemistry, 2016, 14, 3376-3384.	2.8	42
75	Synthesis of 3-aminooxindoles via acid-promoted cyclization of α-imino-N-arylamides and α-azido-N-arylamides. Tetrahedron, 2016, 72, 846-852.	1.9	7
76	Visible Lightâ€Induced Radical Cyclization of Ethyl 2â€(<i>N</i> â€Arylcarbamoyl)â€2â€Chloroiminoacetates: Synthesis of Quinoxalinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2015, 357, 3696-3702.	4.3	50
77	<i>tertâ€</i> Butyl Hydroperoxide and Tetrabutylammonium Iodideâ€Promoted Free Radical Cyclization of αâ€Iminoâ€ <i>N</i> â€arylamides and αâ€Azidoâ€ <i>N</i> â€arylamides. Advanced Synthesis and Catalysis, 201 2529-2539.	54357,	23
78	Magnetic polymer nanocomposite-supported Pd: an efficient and reusable catalyst for the Heck and Suzuki reactions in water. New Journal of Chemistry, 2015, 39, 2052-2059.	2.8	44
79	Copperâ€Catalyzed Cyclization and Azidation of γ,δâ€Unsaturated Ketone Oâ€Benzoyl Oximes. Advanced Synthesis and Catalysis, 2015, 357, 64-70.	4.3	45
80	<i>N</i> â€Bromosuccinimideâ€Mediated Radical Cyclization of 3â€Arylallyl Azides: Synthesis of 3â€Substituted Quinolines. Advanced Synthesis and Catalysis, 2015, 357, 221-226.	4.3	26
81	Synthesis of Isoxazoline-Functionalized Phenanthridines via Iminoxyl Radical-Participated Cascade Sequence. Organic Letters, 2014, 16, 6476-6479.	4.6	91
82	Transition from Ï€ Radicals to σ Radicals: Substituentâ€Tuned Cyclization of Hydrazonyl Radicals. Angewandte Chemie - International Edition, 2014, 53, 3158-3162.	13.8	92
83	Iminoxyl Radical-Promoted Dichotomous Cyclizations: Efficient Oxyoximation and Aminooximation of Alkenes. Organic Letters, 2014, 16, 4650-4653.	4.6	105
84	Oxygenâ€Involved Oxidative Deacetylation of αâ€Substituted βâ€Acetyl Amides – Synthesis of αâ€Keto Amid Advanced Synthesis and Catalysis, 2013, 355, 3708-3714.	es. 4.3	21
85	Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chemistry, 2013, 15, 3429.	9.0	97
86	Cobalt-catalyzed aerobic oxidative cyclization of \hat{l}^2 , \hat{l}^3 -unsaturated oximes. Tetrahedron, 2013, 69, 3274-3280.	1.9	48
87	Straightforward access to aryl-substituted/fused 1,3-dithiole-2-chalcogenones by Cu-catalyzed C–S coupling between aryl iodides and zinc–thiolate complex (TBA)2[Zn(DMIT)2]. RSC Advances, 2013, 3, 10193.	3.6	23
88	Phenyliodine Bis(trifluoroacetate) Mediated Intramolecular Oxidative Coupling of Electron-Rich N-Phenyl Benzamides. Synlett, 2012, 23, 1534-1540.	1.8	33
89	The Reaction of Tertiary Anilines with Maleimides under Visible Light Redox Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 3561-3567.	4.3	131
90	Synthesis of oxindolesvia visible light photoredox catalysis. Organic and Biomolecular Chemistry, 2012, 10, 498-501.	2.8	92

#	Article	IF	CITATIONS
91	Oxime Radical Promoted Dioxygenation, Oxyamination, and Diamination of Alkenes: Synthesis of Isoxazolines and Cyclic Nitrones. Angewandte Chemie - International Edition, 2012, 51, 8816-8820.	13.8	190
92	BiX ₃ and FeX ₃ â€Promoted Prins Cyclization of Enol Ethers in CH ₂ Cl ₂ . Chinese Journal of Chemistry, 2012, 30, 1439-1444.	4.9	9
93	TBAI-catalyzed oxidative coupling of aminopyridines with β-keto esters and 1,3-diones—synthesis of imidazo[1,2-a]pyridines. Chemical Communications, 2011, 47, 11333.	4.1	233
94	Efficient aerobic oxidative synthesis of 2-aryl quinazolines via benzyl C–H bond amination catalyzed by 4-hydroxy-TEMPO. Chemical Communications, 2011, 47, 7818.	4.1	136
95	Ag2O-Mediated Intramolecular Oxidative Coupling of Acetoacetanilides for the Synthesis of 3-Acetyloxindoles. Synlett, 2010, 2010, 2607-2610.	1.8	28
96	The Synthesis of Polysubstituted Pyrroles <i>via</i> the Coupling of Phenyliodonium Ylides and Enamine Esters. Advanced Synthesis and Catalysis, 2009, 351, 2063-2066.	4.3	41
97	PtCl2-catalyzed reactions of o-alkynylanilines with ethyl propiolate and dimethyl acetylenedicarboxylate. Tetrahedron, 2009, 65, 1140-1146.	1.9	53
98	Preparation and selfâ€assembly behavior of thermosensitive polymeric micelles comprising poly(styreneâ€ <i>b</i> â€ <i>N,N</i> â€diethylacrylamide). Journal of Applied Polymer Science, 2008, 110, 900-907.	2.6	7
99	Preparation and characterization of thermo-sensitive micelles composed of PSt-b-P(DEA-co-DMA). E-Polymers, 2008, 8, .	3.0	1
100	ZrCl4/Hantzsch 1,4-dihydropyridine as a new and efficient reagent combination for the direct reductive amination of aldehydes and ketones with weakly basic amines. Chinese Chemical Letters, 2007, 18, 458-460.	9.0	17
101	An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron, 2006, 62, 2492-2496.	1.9	75
102	Photochemical reductive desulfonylation of \hat{l}^2 -ketosulfones by ascorbic acid. Tetrahedron Letters, 2006, 47, 1805-1807.	1.4	19
103	A CAN-initiated aza-Diels–Alder reaction for a facile synthesis of 4-amido-N-yl tetrahydroquinolines. Tetrahedron Letters, 2006, 47, 3545-3547.	1.4	44
104	Y-Zeolite-Catalyzed Cyclizations of Terpenols. Advanced Synthesis and Catalysis, 2006, 348, 59-62.	4.3	10