Ruisheng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3894889/publications.pdf

Version: 2024-02-01

331538 377752 33 1,886 21 34 h-index citations g-index papers 36 36 36 3121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spontaneous Growth of 3D Framework Carbon from Sodium Citrate for High Energy†and Powerâ€Density and Longâ€Life Sodiumâ€Ion Hybrid Capacitors. Advanced Energy Materials, 2018, 8, 1702409.	10.2	221
2	Inâ€Plane Microâ€Supercapacitors for an Integrated Device on One Piece of Paper. Advanced Functional Materials, 2017, 27, 1702394.	7.8	195
3	Matrixâ€Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors. Advanced Materials, 2013, 25, 3343-3350.	11.1	160
4	Threeâ€Dimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	11.1	156
5	A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8316-8327.	5.2	138
6	Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO ₂ Using Ionic Liquid Gel Electrolytes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25378-25389.	4.0	99
7	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	5.6	96
8	Watchband‣ike Supercapacitors with Body Temperature Inducible Shape Memory Ability. Advanced Energy Materials, 2016, 6, 1600763.	10.2	94
9	Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Science China Technological Sciences, 2013, 56, 2888-2913.	2.0	84
10	Mesoporous Ni-doped MnCo ₂ O ₄ hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. Journal of Materials Chemistry A, 2016, 4, 18392-18400.	5. 2	68
11	Fullâ€Solution Processed Flexible Organic Solar Cells Using Lowâ€Cost Printable Copper Electrodes. Advanced Materials, 2014, 26, 7271-7278.	11.1	67
12	All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chinese Chemical Letters, 2016, 27, 1586-1591.	4.8	62
13	Carbon encapsulated RuO ₂ nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8180-8189.	5.2	59
14	Field emission from the structure of well-aligned TiO2/Ti nanotube arrays. Thin Solid Films, 2009, 517, 4390-4393.	0.8	40
15	Aqueous and Airâ€Compatible Fabrication of Highâ€Performance Conductive Textiles. Chemistry - an Asian Journal, 2014, 9, 2170-2177.	1.7	36
16	Electrospinning Synthesis of Mesoporous MnCoNiO _{<i>x</i>} @Double-Carbon Nanofibers for Sodium-lon Battery Anodes with Pseudocapacitive Behavior and Long Cycle Life. ACS Applied Materials & Double-Carbon Nanofibers and Long Cycle Life. ACS Applied Materials & Double-Carbon Nanofibers are supplied to the Materials & Double-Carbon Nanofibers & Double-Carbon Nanofi	4.0	36
17	Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction. Tribology International, 2022, 169, 107458.	3.0	36
18	2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chemical Engineering Journal, 2022, 429, 132196.	6.6	30

#	Article	IF	CITATIONS
19	Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Naâ€lon Diffusivity for Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, 2109694.	7.8	24
20	Electron field emission from the carbon-doped TiO2 nanotube arrays. Thin Solid Films, 2011, 519, 8173-8177.	0.8	21
21	Durable, Washable, and Flexible Conductive PET Fabrics Designed by Fiber Interfacial Molecular Engineering. Macromolecular Materials and Engineering, 2016, 301, 1383-1389.	1.7	21
22	Field emission cathode based on three-dimensional framework carbon and its operation under the driving of a triboelectric nanogenerator. Nano Energy, 2018, 49, 308-315.	8.2	20
23	Composite electrodes with NiCoAl-LDH coated Ti3C2Tx MXene and incorporated Ag nanowires for screen-printable in-plane hybrid supercapacitors on textiles. Applied Surface Science, 2022, 598, 153796.	3.1	20
24	Synthesis and field emission of diamond-like carbon nanorods on TiO2/Ti nanotube arrays. Applied Surface Science, 2009, 256, 39-42.	3.1	17
25	Field emission from TiO2/Ti nanotube arrays with different morphologies. Physica B: Condensed Matter, 2010, 405, 4682-4686.	1.3	15
26	Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Materials, 2014, 6, e130-e130.	3.8	13
27	A Review of MnO ₂ Composites Incorporated with Conductive Materials for Energy Storage. Chemical Record, 2022, 22, .	2.9	12
28	Highly durable hydrophobicity in simulated space environment. RSC Advances, 2014, 4, 28780-28785.	1.7	11
29	Stencil-printed electrodes without current collectors and inactive additives on textiles for in-plane microsupercapacitors. Journal of Materials Chemistry A, 2021, 9, 25042-25050.	5.2	11
30	Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56597-56606.	4.0	9
31	Field Emission from TiO\$_2\$/Ti Nanotube Array Films Modified with Carbon Nanotubes. Journal of the Korean Physical Society, 2009, 55, 2662-2666.	0.3	8
32	Low‶emperatureâ€Processed CdS as the Electron Selective Layer in an Organometal Halide Perovskite Photovoltaic Device. Particle and Particle Systems Characterization, 2018, 35, 1800137.	1.2	4
33	Fabrication and field emission of carbon nanotubes/TiO2/Ti composite nanostructures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1274-1278.	0.6	2