David Hicks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389403/publications.pdf

Version: 2024-02-01

759233 996975 18 611 12 15 citations h-index g-index papers 18 18 18 640 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The AFLOW Library of Crystallographic Prototypes: Part 1. Computational Materials Science, 2017, 136, S1-S828.	3.0	147
2	The AFLOW Library of Crystallographic Prototypes: Part 2. Computational Materials Science, 2019, 161, S1-S1011.	3.0	70
3	AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. Journal of Chemical Information and Modeling, 2018, 58, 2477-2490.	5.4	69
4	Unavoidable disorder and entropy in multi-component systems. Npj Computational Materials, 2019, 5, .	8.7	61
5	Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 2017, 1, .	2.4	47
6	<i>AFLOW-SYM</i> : platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 184-203.	0.1	44
7	AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes. Npj Computational Materials, 2021, 7, .	8.7	28
8	Settling the matter of the role of vibrations in the stability of high-entropy carbides. Nature Communications, 2021, 12, 5747.	12.8	28
9	High-entropy ceramics: Propelling applications through disorder. MRS Bulletin, 2022, 47, 194-202.	3.5	26
10	Metallic glasses for biodegradable implants. Acta Materialia, 2019, 176, 297-305.	7.9	25
11	The AFLOW Library of Crystallographic Prototypes: Part 3. Computational Materials Science, 2021, 199, 110450.	3.0	16
12	Parametrically constrained geometry relaxations for high-throughput materials science. Npj Computational Materials, 2019, 5, .	8.7	13
13	The AFLOW Fleet for Materials Discovery. , 2018, , 1-28.		9
14	Automated coordination corrected enthalpies with AFLOW-CCE. Physical Review Materials, 2021, 5, .	2.4	9
15	AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids. Physical Review Materials, 2019, 3, .	2.4	8
16	Tin-pest problem as a test of density functionals using high-throughput calculations. Physical Review Materials, 2021, 5, .	2.4	7
17	The AFLOW Fleet for Materials Discovery. , 2020, , 1785-1812.		4
18	The AFLOW Fleet for Materials Discovery. , 2019, , 1-28.		0