
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893795/publications.pdf

Version: 2024-02-01

IEAN-MICHEL ANÃO

#	Article	IF	CITATIONS
1	A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses. Science, 2004, 303, 1361-1364.	6.0	697
2	Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes. Science, 2004, 303, 1364-1367.	6.0	493
3	Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 2016, 82, 3698-3710.	1.4	443
4	Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361, .	6.0	339
5	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	3.3	292
6	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	3.5	263
7	Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 2010, 186, 514-525.	3.5	246
8	A Novel Nuclear Protein Interacts With the Symbiotic DMI3 Calcium- and Calmodulin-Dependent Protein Kinase of <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2007, 20, 912-921.	1.4	245
9	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	2.6	236
10	Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution. PLoS Genetics, 2014, 10, e1004487.	1.5	229
11	Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14348-14353.	3.3	191
12	Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice. Plant Cell, 2015, 27, 823-838.	3.1	188
13	The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2002, 2, 1.	1.6	183
14	Evolution of the plant–microbe symbiotic â€~toolkit'. Trends in Plant Science, 2013, 18, 298-304.	4.3	159
15	3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2007, 19, 3974-3989.	3.1	158
16	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	1.4	147
17	Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist, 2015, 208, 79-87.	3.5	139
18	Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 2020, 5, 314-330.	5.9	135

#	Article	IF	CITATIONS
19	Large-Scale Phosphoprotein Analysis in <i>Medicago truncatula</i> Roots Provides Insight into in Vivo Kinase Activity in Legumes Â. Plant Physiology, 2009, 152, 19-28.	2.3	133
20	A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nature Biotechnology, 2016, 34, 1198-1205.	9.4	133
21	Symbiosis and the social network of higher plants. Current Opinion in Plant Biology, 2013, 16, 118-127.	3.5	130
22	<scp>MALDI</scp> mass spectrometryâ€assisted molecular imaging of metabolites during nitrogen fixation in the <i><scp>M</scp>edicago truncatula</i> – <i><scp>S</scp>inorhizobium meliloti</i> symbiosis. Plant Journal, 2013, 75, 130-145.	2.8	119
23	Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology, 2019, 17, 99.	1.7	114
24	The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant Journal, 2007, 49, 208-216.	2.8	113
25	Rapid Phosphoproteomic and Transcriptomic Changes in the Rhizobia-legume Symbiosis. Molecular and Cellular Proteomics, 2012, 11, 724-744.	2.5	112
26	Agrobacterium-Mediated Transient Gene Expression and Silencing: A Rapid Tool for Functional Gene Assay in Potato. PLoS ONE, 2009, 4, e5812.	1.1	111
27	A role for the mevalonate pathway in early plant symbiotic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9781-9786.	3.3	111
28	Tracing Nonlegume Orthologs of Legume Genes Required for Nodulation and Arbuscular Mycorrhizal Symbioses. Genetics, 2006, 172, 2491-2499.	1.2	107
29	The <i>Medicago truncatula</i> DMI1 Protein Modulates Cytosolic Calcium Signaling. Plant Physiology, 2007, 145, 192-203.	2.3	99
30	Plant Responses to Bacterial <i>N</i> -Acyl <scp>l</scp> -Homoserine Lactones are Dependent on Enzymatic Degradation to <scp>l</scp> -Homoserine. ACS Chemical Biology, 2014, 9, 1834-1845.	1.6	93
31	Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Current Opinion in Plant Biology, 2004, 7, 408-413.	3.5	92
32	Microbiomes of Streptophyte Algae and Bryophytes Suggest That a Functional Suite of Microbiota Fostered Plant Colonization of Land. International Journal of Plant Sciences, 2015, 176, 405-420.	0.6	88
33	Germinating Spore Exudates from Arbuscular Mycorrhizal Fungi: Molecular and Developmental Responses in Plants and Their Regulation by Ethylene. Molecular Plant-Microbe Interactions, 2011, 24, 260-270.	1.4	83
34	OsIPD3, an ortholog of the <i>Medicago truncatula</i> DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytologist, 2008, 180, 311-315.	3.5	77
35	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize <i>Populus</i> Roots. Plant Cell, 2019, 31, 2386-2410.	3.1	73
36	Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K ⁺ Deprivation. Plant Physiology, 2017, 173, 1811-1823.	2.3	69

#	Article	IF	CITATIONS
37	Genetic and Cytogenetic Mapping of DMI1, DMI2, and DMI3 Genes of Medicago truncatula Involved in Nod Factor Transduction, Nodulation, and Mycorrhization. Molecular Plant-Microbe Interactions, 2002, 15, 1108-1118.	1.4	67
38	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	5.8	65
39	The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling. Plant Cell, 2012, 24, 2528-2545.	3.1	57
40	Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytologist, 2017, 213, 531-536.	3.5	53
41	Multifaceted Investigation of Metabolites During Nitrogen Fixation in <i>Medicago</i> via High Resolution MALDI-MS Imaging and ESI-MS. Journal of the American Society for Mass Spectrometry, 2015, 26, 149-158.	1.2	48
42	The pathogenic development of <i>Sclerotinia sclerotiorum</i> in soybean requires specific host NADPH oxidases. Molecular Plant Pathology, 2018, 19, 700-714.	2.0	47
43	Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Applied Soil Ecology, 2020, 154, 103603.	2.1	47
44	A rhamnose-deficient lipopolysaccharide mutant of <i>Rhizobium</i> sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts <i>Sesbania cannabina</i> and wetland rice. Journal of Experimental Botany, 2016, 67, 5869-5884.	2.4	45
45	A Model for Nitrogen Fixation in Cereal Crops. Trends in Plant Science, 2020, 25, 226-235.	4.3	43
46	Leveraging Proteomics to Understand Plant–Microbe Interactions. Frontiers in Plant Science, 2012, 3, 44.	1.7	42
47	Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume–rhizobia symbiosis. FEBS Letters, 2012, 586, 3150-3158.	1.3	42
48	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	4.7	42
49	Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synthetic Biology, 2021, 10, 3264-3277.	1.9	42
50	Recent Advances in <i>Medicago truncatula</i> Genomics. International Journal of Plant Genomics, 2008, 2008, 1-11.	2.2	40
51	Complete Genome Sequence of the <i>Sesbania</i> Symbiont and Rice Growth-Promoting Endophyte <i>Rhizobium</i> sp. Strain IRBG74. Genome Announcements, 2013, 1, .	0.8	39
52	Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago truncatula. Frontiers in Plant Science, 2018, 9, 1238.	1.7	39
53	Staying in touch: mechanical signals in plant–microbe interactions. Current Opinion in Plant Biology, 2014, 20, 104-109.	3.5	36
54	Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals. Molecular Plant-Microbe Interactions, 2021, 34, 491-498.	1.4	36

#	Article	IF	CITATIONS
55	Crop Rotation and Management Effect on <i>Fusarium</i> spp. Populations. Crop Science, 2015, 55, 365-376.	0.8	34
56	Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nature Communications, 2019, 10, 3703.	5.8	34
57	A critical review of 25 years of glomalin research: a better mechanical understanding and robust quantification techniques are required. New Phytologist, 2021, 232, 1572-1581.	3.5	34
58	New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydrate Research, 2016, 434, 83-93.	1.1	32
59	Identification of legume <i>RopGEF</i> gene families and characterization of a <i>Medicago truncatula</i> RopGEF mediating polar growth of root hairs. Plant Journal, 2011, 65, 230-243.	2.8	30
60	Soybean Response to Soil Rhizobia and Seedâ€applied Rhizobia Inoculants in Wisconsin. Crop Science, 2012, 52, 339-344.	0.8	30
61	Examination of Endogenous Peptides in <i>Medicago truncatula</i> Using Mass Spectrometry Imaging. Journal of Proteome Research, 2016, 15, 4403-4411.	1.8	29
62	Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data. Frontiers in Plant Science, 2012, 3, 122.	1.7	28
63	A Proteogenomic Survey of the Medicago truncatula Genome. Molecular and Cellular Proteomics, 2012, 11, 933-944.	2.5	27
64	Unravelling the molecular basis for symbiotic signal transduction in legumes. Molecular Plant Pathology, 2006, 7, 197-207.	2.0	24
65	Response of Medicago truncatula Seedlings to Colonization by Salmonella enterica and Escherichia coli O157:H7. PLoS ONE, 2014, 9, e87970.	1.1	22
66	Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume–Rhizobia Symbiosis. ChemBioChem, 2016, 17, 2199-2205.	1.3	18
67	Corn-soybean rotation, tillage, and foliar fungicides: Impacts on yield and soil fungi. Field Crops Research, 2021, 262, 108030.	2.3	16
68	Identification of the phosphorylation targets of symbiotic receptorâ€like kinases using a highâ€ŧhroughput multiplexed assay for kinase specificity. Plant Journal, 2017, 90, 1196-1207.	2.8	15
69	Yield Response to Crop/Genotype Rotations and Fungicide Use to Manage Fusarium â€related Diseases. Crop Science, 2015, 55, 889-898.	0.8	13
70	Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Frontiers in Microbiology, 2020, 11, 93.	1.5	13
71	Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula. PLoS ONE, 2016, 11, e0155460.	1.1	13
72	Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annual Review of Microbiology, 2021, 75, 583-607.	2.9	13

#	Article	IF	CITATIONS
73	Effect of drought on Bradyrhizobium japonicum populations in Midwest soils. Plant and Soil, 2014, 382, 165-173.	1.8	12
74	Enumeration of Soybeanâ€Associated Rhizobia with Quantitative Realâ€Time Polymerase Chain Reaction. Crop Science, 2010, 50, 2591-2596.	0.8	11
75	Soybean Cyst Nematode Control with <i>Pasteuria nishizawae</i> Under Different Management Practices. Agronomy Journal, 2018, 110, 2534-2540.	0.9	11
76	Transcription Factors Controlling the Rhizobium–Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. Plant and Cell Physiology, 2022, 63, 1326-1343.	1.5	11
77	Salmonella entericaserovar Typhimurium ATCC 14028S is tolerant to plant defenses triggered by the flagellin receptor FLS2. FEMS Microbiology Letters, 2019, 366, .	0.7	10
78	A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. Plant and Cell Physiology, 2019, 60, 575-586.	1.5	10
79	Spatiotemporal cytokinin response imaging and ISOPENTENYLTRANSFERASE 3 function in Medicago nodule development. Plant Physiology, 2022, 188, 560-575.	2.3	10
80	Potential regulatory phosphorylation sites in a <i>Medicago truncatula</i> plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Letters, 2015, 589, 2186-2193.	1.3	9
81	<scp><i>KIN3</i></scp> impacts arbuscular mycorrhizal symbiosis and promotes fungal colonisation in <i>Medicago truncatula</i> . Plant Journal, 2022, 110, 513-528.	2.8	9
82	Genetic Determinants of Ammonium Excretion in <i>nifL</i> Mutants of Azotobacter vinelandii. Applied and Environmental Microbiology, 2022, 88, AEM0187621.	1.4	9
83	Role of cytosolic, tyrosineâ€insensitive prephenate dehydrogenase in <i>MedicagoÂtruncatula</i> . Plant Direct, 2020, 4, e00218.	0.8	7
84	Influence of PRE-emergence herbicides on soybean development, root nodulation and symbiotic nitrogen fixation. Crop Protection, 2021, 144, 105576.	1.0	7
85	Soybean Response to Rhizobia on Previously Flooded Sites in Southern Wisconsin. Agronomy Journal, 2011, 103, 573-576.	0.9	6
86	Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Frontiers in Microbiology, 2016, 7, 1734.	1.5	6
87	Perception of lipo-chitooligosaccharides by the bioenergy crop <i>Populus</i> . Plant Signaling and Behavior, 2021, 16, 1903758.	1.2	6
88	Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Plant Signaling and Behavior, 2017, 12, e1307494.	1.2	5
89	Inoculation with arbuscular mycorrhizal fungi has a more significant positive impact on the growth of open-pollinated heirloom varieties of carrots than on hybrid cultivars under organic management conditions. Agriculture, Ecosystems and Environment, 2020, 289, 106712.	2.5	5
90	A network-based comparative framework to study conservation and divergence of proteomes in plant phylogenies. Nucleic Acids Research, 2021, 49, e3-e3.	6.5	5

JEAN-MICHEL ANé

#	Article	IF	CITATIONS
91	Characterizing the Effect of Foliar Lipo-chitooligosaccharide Application on Sudden Death Syndrome and Sclerotinia Stem Rot in Soybean. Plant Health Progress, 2018, 19, 46-53.	0.8	4
92	Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. Frontiers in Fungal Biology, 2022, 3, .	0.9	4
93	Functional and comparative genomics reveals conserved noncoding sequences in the nitrogenâ€fixing clade. New Phytologist, 2022, 234, 634-649.	3.5	2
94	Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. IScience, 2022, 25, 103754.	1.9	2
95	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	1.2	1
96	Genetic and Molecular Analysis of Nod Factor Signalling in Medicago truncatula. , 2005, , 165-168.		0