
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017, 11, 63-68.	15.6	494
2	Bisâ€Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials, 2016, 28, 2795-2800.	11.1	247
3	Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 2020, 14, 570-577.	15.6	237
4	Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor. ACS Applied Materials & Interfaces, 2016, 8, 4811-4818.	4.0	173
5	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 3017-3021.	7.2	166
6	Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 1937-1945.	6.7	129
7	High-efficiency blue organic light-emitting diodes using a 3,5-di(9H-carbazol-9-yl)tetraphenylsilane host via a solution-process. Journal of Materials Chemistry, 2010, 20, 8411.	6.7	122
8	Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nature Communications, 2018, 9, 3111.	5.8	112
9	Insight into the mechanism and outcoupling enhancement of excimer-associated white light generation. Chemical Science, 2016, 7, 3556-3563.	3.7	108
10	Device characteristics and material developments of indoor photovoltaic devices. Materials Science and Engineering Reports, 2020, 139, 100517.	14.8	108
11	Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs. Inorganic Chemistry, 2015, 54, 4029-4038.	1.9	87
12	Transparent and Flexible Inorganic Perovskite Photonic Artificial Synapses with Dualâ€Mode Operation. Advanced Functional Materials, 2021, 31, 2008259.	7.8	83
13	Role of Antisite Disorder, Rare-Earth Size, and Superexchange Angle on Band Gap, Curie Temperature, and Magnetization of R ₂ NiMnO ₆ Double Perovskites. ACS Applied Electronic Materials, 2019, 1, 141-153.	2.0	82
14	Theoretical Study of N749 Dyes Anchoring on the (TiO ₂) ₂₈ Surface in DSSCs and Their Electronic Absorption Properties. Journal of Physical Chemistry C, 2012, 116, 16338-16345.	1.5	76
15	Functional Pyrimidineâ€Based Thermally Activated Delay Fluorescence Emitters: Photophysics, Mechanochromism, and Fabrication of Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2017, 23, 2858-2866.	1.7	75
16	Bisâ€Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blueâ€Emitting OLEDs. Advanced Science, 2018, 5, 1800846.	5.6	75
17	Achieving high-efficiency non-doped blue organic light-emitting diodes: charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility. Journal of Materials Chemistry, 2009, 19, 5561.	6.7	68
18	Organic polymeric and small molecular electron acceptors for organic solar cells. Materials Science and Engineering Reports, 2018, 124, 1-57.	14.8	67

#	Article	IF	CITATIONS
19	Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 2151-2157.	4.0	66
20	Efficient thermally activated delayed fluorescence of functional phenylpyridinato boron complexes and high performance organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1452-1462.	2.7	65
21	Harnessing the open-circuit voltage via a new series of Ru(ii) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries. Energy and Environmental Science, 2013, 6, 859.	15.6	64
22	Transparent Organic Upconversion Devices for Nearâ€Infrared Sensing. Advanced Materials, 2015, 27, 1217-1222.	11.1	64
23	A silole copolymer containing a ladder-type heptacylic arene and naphthobisoxadiazole moieties for highly efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 552-557.	15.6	61
24	Highly efficient red electrophosphorescent device incorporating a bipolar triphenylamine/bisphenylsulfonyl-substituted fluorene hybrid as the host. Journal of Materials Chemistry, 2009, 19, 8002.	6.7	60
25	Functional Pyrimidinyl Pyrazolate Pt(II) Complexes: Role of Nitrogen Atom in Tuning the Solid‧tate Stacking and Photophysics. Advanced Functional Materials, 2019, 29, 1900923.	7.8	56
26	Heteroleptic Ir(<scp>iii</scp>) phosphors with bis-tridentate chelating architecture for high efficiency OLEDs. Journal of Materials Chemistry C, 2015, 3, 3460-3471.	2.7	55
27	Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24090-24098.	4.0	55
28	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 27090-27101.	4.0	54
29	Ru(ii) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 7549.	15.6	53
30	Harnessing Fluorescence versus Phosphorescence Branching Ratio in (Phenyl) _{<i>n</i>} -Bridged (<i>n</i> = 0–5) Bimetallic Au(I) Complexes. Journal of Physical Chemistry C, 2013, 117, 9623-9632.	1.5	53
31	Panchromatic Ru(<scp>ii</scp>) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 17618-17627.	5.2	53
32	Unprecedented Homoleptic Bisâ€Tridentate Iridium(III) Phosphors: Facile, Scaledâ€Up Production, and Superior Chemical Stability. Advanced Functional Materials, 2017, 27, 1702856.	7.8	53
33	Room temperature blue phosphorescence: a combined experimental and theoretical study on the bis-tridentate lr(<scp>iii</scp>) metal complexes. Dalton Transactions, 2016, 45, 15364-15373.	1.6	51
34	New D–A–A-Configured Small-Molecule Donors for High-Efficiency Vacuum-Processed Organic Photovoltaics under Ambient Light. ACS Applied Materials & Interfaces, 2019, 11, 8337-8349.	4.0	50
35	Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing Highâ€Efficiency Exciplex Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904114.	11.1	49
36	Isomeric spiro-[acridine-9,9′-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances. Journal of Materials Chemistry C, 2018, 6, 10088-10100.	2.7	46

#	Article	IF	CITATIONS
37	High-Efficiency Red and Near-Infrared Organic Light-Emitting Diodes Enabled by Pure Organic Fluorescent Emitters and an Exciplex-Forming Cohost. ACS Applied Materials & Interfaces, 2019, 11, 23417-23427.	4.0	45
38	Near-Infrared Emission Induced by Shortened Pt–Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. Inorganic Chemistry, 2019, 58, 13892-13901.	1.9	40
39	Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. Journal of Applied Physics, 2007, 101, 114501.	1.1	39
40	Open-circuit voltage and efficiency improvement of subphthalocyanine-based organic photovoltaic device through deposition rate control. Solar Energy Materials and Solar Cells, 2012, 103, 69-75.	3.0	39
41	ITO-free, efficient, and inverted phosphorescent organic light-emitting diodes using a WO 3 /Ag/WO 3 multilayer electrode. Organic Electronics, 2016, 31, 240-246.	1.4	38
42	4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate: a morphologically stable and efficient exciton-blocking material for organic photovoltaics with prolonged lifetime. Journal of Materials Chemistry, 2010, 20, 7800.	6.7	37
43	Dyeâ€Sensitized Solar Cells Based on Functionally Separated Dâ€Ï€â€A Dyes with 2â€Cyanopyridine as an Electronâ€Accepting and Anchoring Group. Asian Journal of Organic Chemistry, 2014, 3, 153-160.	1.3	35
44	Os(<scp>ii</scp>) metal phosphors bearing tridentate 2,6-di(pyrazol-3-yl)pyridine chelate: synthetic design, characterization and application in OLED fabrication. Journal of Materials Chemistry C, 2014, 2, 6269.	2.7	34
45	Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition. Advanced Optical Materials, 2018, 6, 1800083.	3.6	34
46	Vacuumâ€Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Nearâ€Infrared Wavelength. Advanced Optical Materials, 2020, 8, 2000519.	3.6	34
47	A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1011-1019.	2.0	34
48	Chloroboron subphthalocyanine/C60 planar heterojunction organic solar cell with N,N-dicarbazolyl-3,5-benzene blocking layer. Solar Energy Materials and Solar Cells, 2014, 122, 264-270.	3.0	33
49	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 3069-3073.	1.6	32
50	Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Organic Electronics, 2018, 59, 266-271.	1.4	32
51	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. ACS Applied Materials & Interfaces, 2020, 12, 1084-1093.	4.0	31
52	Solution processed Li ₅ AlO ₄ dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors. Journal of Materials Chemistry C, 2018, 6, 790-798.	2.7	30
53	Highly Twisted Dianchoring Dâ^"i€â€"A Sensitizers for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27832-27842.	4.0	29
54	Ultra-Low Voltage Metal Oxide Thin Film Transistor by Low-Temperature Annealed Solution Processed LiAlO2 Gate Dielectric. Electronic Materials Letters, 2020, 16, 22-34.	1.0	29

Sнін-Нимс Liu

#	Article	IF	CITATIONS
55	Sky Blue-Emitting Iridium(III) Complexes Bearing Nonplanar Tetradentate Chromophore and Bidentate Ancillary. Inorganic Chemistry, 2017, 56, 10054-10060.	1.9	28
56	Flexible quantum dot lightâ€emitting devices for targeted photomedical applications. Journal of the Society for Information Display, 2018, 26, 296-303.	0.8	28
57	Combinational Approach To Realize Highly Efficient Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 14254-14264.	4.0	28
58	Thiocyanateâ€Free Ru(II) Sensitizers with a 4,4′â€Dicarboxyvinylâ€2,2′â€bipyridine Anchor for Dyeâ€6ensit Solar Cells. Advanced Functional Materials, 2013, 23, 2285-2294.	ized 7.8	27
59	Ru(ii) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7681.	5.2	26
60	Aggregation Control, Surface Passivation, and Optimization of Device Structure toward Nearâ€Infrared Perovskite Quantumâ€Dot Lightâ€Emitting Diodes with an EQE up to 15.4%. Advanced Materials, 2022, 34, e2109785.	11.1	26
61	Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(ii) sensitizers for dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5418-5426.	5.2	25
62	Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Organic Electronics, 2019, 65, 150-155.	1.4	25
63	Carbazole/Benzimidazole-Based Bipolar Molecules as the Hosts for Phosphorescent and Thermally Activated Delayed Fluorescence Emitters for Efficient OLEDs. ACS Omega, 2020, 5, 10553-10561.	1.6	25
64	A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy, 2021, 80, 105565.	8.2	25
65	Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping. Scientific Reports, 2016, 6, 32324.	1.6	24
66	Highly efficient ITO-free organic light-emitting diodes employing a roughened ultra-thin silver electrode. Organic Electronics, 2017, 42, 52-58.	1.4	22
67	Versatile Pt(II) Pyrazolate Complexes: Emission Tuning via Interplay of Chelate Designs and Stacking Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 16679-16690.	4.0	22
68	Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary. Inorganic Chemistry, 2018, 57, 8287-8298.	1.9	21
69	Enhancing extracted electroluminescence from light-emitting electrochemical cells by employing high-refractive-index substrates. Organic Electronics, 2017, 51, 149-155.	1.4	20
70	Blue-emitting bis-tridentate Ir(<scp>iii</scp>) phosphors: OLED performances <i>vs.</i> substituent effects. Journal of Materials Chemistry C, 2018, 6, 10486-10496.	2.7	20
71	Highly efficient blue and white light-emitting electrochemical cells employing substrates containing embedded diffusive layers. Organic Electronics, 2020, 77, 105515.	1.4	20
72	Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 – <i>x</i>)Na0.5Bi0.5TiO3- <i>x</i> AgTaO3 ceramics. Journal of Applied Physics, 2019, 12	5, ^{1.1}	19

SHIH-HUNG LIU

#	Article	IF	CITATIONS
73	Perovskite Photosensors Integrated with Silver Resonantâ€Cavity Color Filters Display Color Perception Beyond That of the Human Eye. Advanced Functional Materials, 2020, 30, 2002503.	7.8	19
74	Efficient Hybrid White Organic Light-Emitting Devices with a Reduced Efficiency Roll-off Based on a Blue Fluorescent Emitter of Which Charge Carriers Are Ambipolar and Electric-Field Independent. Journal of Physical Chemistry C, 2011, 115, 2428-2432.	1.5	18
75	In Situ Measurement of Energy Level Shifts and Recombination Rates in Subphthalocyanine/C ₆₀ Bilayer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22858-22864.	1.5	18
76	Inducing the trap-site in an emitting-layer for an organic upconversion device exhibiting high current-gain ratio and low turn-on voltage. Organic Electronics, 2016, 30, 275-280.	1.4	18
77	Transparent organic upconversion device targeting high- grade infrared visual image. Nano Energy, 2021, 86, 106043.	8.2	18
78	Comprehensive study of medium-bandgap conjugated polymer merging a fluorinated quinoxaline with branched side chains for highly efficient and air-stable polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20203-20212.	5.2	17
79	The effect of charge transfer state on the open-circuit voltage of small-molecular organic photovoltaic devices: A comparison between the planar and bulk heterojunctions using electroluminescence characterization. Organic Electronics, 2015, 16, 1-8.	1.4	17
80	Unveiling the underlying mechanism of record-high efficiency organic near-infrared photodetector harnessing a single-component photoactive layer. Materials Horizons, 2020, 7, 1171-1179.	6.4	17
81	Single-Layer Blue Electrophosphorescent Organic Light-Emitting Diodes Based on Small-Molecule Mixed Hosts: Comparison between the Solution and Vacuum Fabrication Processes. Japanese Journal of Applied Physics, 2013, 52, 012101.	0.8	15
82	Influence of Singlet and Charge-Transfer Excitons on the Open-Circuit Voltage of Rubrene/Fullerene Organic Photovoltaic Device. ACS Applied Materials & Interfaces, 2016, 8, 28757-28762.	4.0	15
83	Highly efficient exciplex organic light-emitting devices employing a sputtered indium-tin oxide electrode with nano-pinhole morphology. Journal of Materials Chemistry C, 2017, 5, 12050-12056.	2.7	15
84	Influence of Cation Order and Valence States on Magnetic Ordering in La ₂ Ni _{1â^'<i>x</i>} Mn _{1+<i>x</i>} O ₆ . Physica Status Solidi (B): Basic Research, 2019, 256, 1900019.	0.7	15
85	Effect of ionic size compensation by Ag+ incorporation in homogeneous Fe-substituted ZnO: studies on structural, mechanical, optical, and magnetic properties. RSC Advances, 2018, 8, 24355-24369.	1.7	14
86	Counterion Migration Driven by Light-Induced Intramolecular Charge Transfer. Jacs Au, 2021, 1, 282-293.	3.6	14
87	The effect of ZnO preparation on the performance of inverted polymer solar cells under one sun and indoor light. Journal of Materials Chemistry C, 2021, 9, 1196-1204.	2.7	13
88	The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices. Organic Chemistry Frontiers, 2017, 4, 675-681.	2.3	12
89	New Exciplexâ€Forming Coâ€Host System and Thienothiadazoleâ€based Fluorescent Emitter for Highâ€Efficiency and Promising Stability Nearâ€Infrared OLED. Advanced Optical Materials, 2022, 10, .	3.6	12
90	Microwave-Polyol Synthesis of Sub-10-nm PbS Nanocrystals for Metal Oxide/Nanocrystal Heterojunction Photodetectors. ACS Applied Nano Materials, 2018, 1, 6063-6072.	2.4	11

#	Article	IF	CITATIONS
91	Vacuumâ€Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Nearâ€Infrared Solar Energy. Solar Rrl, 2021, 5, 2000564.	3.1	11
92	Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Interfaces, 2021, 13, 25202-25213.	4.0	11
93	Luminescence of Pyrazinyl Pyrazolate Pt(II) Complexes Fine-Tuned by the Solid-State Stacking Interaction. Energy & Fuels, 2021, 35, 19112-19122.	2.5	11
94	A New Dioxasilepine–Aryldiamine Hybrid Electron-Blocking Material for Wide Linear Dynamic Range and Fast Response Organic Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 18782-18793.	4.0	11
95	A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 2015, 137, 138-145.	3.0	10
96	Enhancing the signal contrast ratio and stability of liquid crystal-based sensors by using fine grids made by photolithography of photoresists. Analyst, The, 2021, 146, 3834-3840.	1.7	10
97	Transparent photodetectors with ultra-low dark current and high photoresponse for near-infrared detection. Organic Electronics, 2021, 99, 106356.	1.4	10
98	A phosphorescent OLED with an efficiency roll-off lower than 1% at 10 000 cd m ^{â^'2} achieved by reducing the carrier mobility of the donors in an exciplex co-host system. Journal of Materials Chemistry C, 2022, 10, 4955-4964.	2.7	10
99	Solution-processed organic micro crystal transistor based on tetraceno[2,3-b]thiophene from a monoketone precursor. Journal of Materials Chemistry, 2011, 21, 11317.	6.7	9
100	In situ vacuum measurement of the thickness dependence of electron mobility in naphthalenetetracarboxylic diimide-based field-effect transistors. Applied Physics Letters, 2011, 98, 023306.	1.5	9
101	Improvement in the open-circuit voltage of an organic photovoltaic device through selection of a suitable and low-lying highest occupied molecular orbital for the electron donor layer. Journal of Materials Research, 2013, 28, 1442-1448.	1.2	9
102	Improving Performance and Lifetime of Small-Molecule Organic Photovoltaic Devices by Using Bathocuproine–Fullerene Cathodic Layer. ACS Applied Materials & Interfaces, 2015, 7, 9262-9273.	4.0	9
103	Decoupling the optical and electrical properties of subphthalocyanine/C ₇₀ bi-layer organic photovoltaic devices: improved photocurrent while maintaining a high open-circuit voltage and fill factor. RSC Advances, 2015, 5, 5617-5626.	1.7	9
104	Role of Li+ and Fe3+ in modified ZnO: Structural, vibrational, opto-electronic, mechanical and magnetic properties. Ceramics International, 2019, 45, 7232-7243.	2.3	9
105	Tandem Organic Light-Emitting Diode and Organic Photovoltaic Device Inside Polymer Dispersed Liquid Crystal Cell. Journal of Display Technology, 2013, 9, 787-793.	1.3	8
106	Downscaling the Sample Thickness to Sub-Micrometers by Employing Organic Photovoltaic Materials as a Charge-Generation Layer in the Time-of-Flight Measurement. Scientific Reports, 2015, 5, 10384.	1.6	8
107	Vacuumâ€Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Nearâ€Infrared Solar Energy. Solar Rrl, 2021, 5, 2170032.	3.1	8
108	Structural effect of phenylcarbazole-based molecules on the exciplex-forming co-host system to achieve highly efficient phosphorescent OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 9453-9464.	2.7	8

#	Article	IF	CITATIONS
109	Ultra-thin and graded sliver electrodes for use in transparent pentacene field-effect transistors. Organic Electronics, 2014, 15, 1990-1997.	1.4	7
110	An alternative composite electrode for efficient organic light-emitting diodes. Organic Electronics, 2020, 85, 105844.	1.4	7
111	Platinum(II)â€Mediated Double Coupling of 2,3â€Diphenylmaleimidine with Nitrile Functionalities To Give Annulated Pentaazanonatetraenate (PANT) Systems. European Journal of Inorganic Chemistry, 2016, 2016, 1480-1487.	1.0	6
112	Stamped Self-Assembled Monolayers on Electrode for Connecting Organic Light-Emitting Diode and Organic Photovoltaic Device. Journal of Display Technology, 2011, 7, 229-234.	1.3	5
113	Efficiency improvement of organic bifunctional devices by applying omnidirectional antireflection nanopillars. RSC Advances, 2014, 4, 9588.	1.7	5
114	Low resistance and high work-function WO ₃ /Ag/MoO ₂ multilayer as transparent anode for bright organic light-emitting diodes. Japanese Journal of Applied Physics, 2015, 54, 03CC01.	0.8	5
115	Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl- 1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer. Journal of Display Technology, 2011, 7, 454-458.	1.3	4
116	Pâ€131: Fully Integration of Transflective Hybrid Device Consisting of PSCT and Inâ€cell OLED. Digest of Technical Papers SID International Symposium, 2011, 42, 1602-1605.	0.1	4
117	A new model for optimization of organic light-emitting device by concurrent incorporation of electrical and optical simulations. Journal of Applied Physics, 2012, 112, .	1.1	4
118	Multicomponent Zn(1-)Fe0.8Na0.2O semiconductors: Effect of dopant concentration and ionic radius on structural, opto-electronics, magnetic and sensing properties. Materials Science in Semiconductor Processing, 2019, 98, 121-130.	1.9	4
119	New Dâ€Aâ€A' onfigured Small Molecule Donors Employing Conjugation to Redâ€shift the Absorption for Photovoltaics. Chemistry - an Asian Journal, 2020, 15, 2520-2531.	1.7	4
120	Realizing a colorful polymer solar cell with high color purity <i>via</i> a metal alloy-dielectric–metal alloy electrode. Journal of Materials Chemistry C, 2021, 9, 11142-11152.	2.7	4
121	Probing Electron Excitation Characters of Carboline-Based Bis-Tridentate Ir(III) Complexes. Molecules, 2021, 26, 6048.	1.7	3
122	P-178: Semi-transparent Tandem Device Comprising Organic Light-emitting Diodes and Organic Solar Cell. Digest of Technical Papers SID International Symposium, 2011, 42, 1767-1769.	0.1	2
123	The Effect of Controlled Dopant Concentration on the Performance of Blue Polymer Lightâ€emitting Diodes. Journal of the Chinese Chemical Society, 2011, 58, 326-331.	0.8	2
124	Improvement in the Power Conversion Efficiency of Bulk Heterojunction Photovoltaic Device via Thermal Postannealing of Subphthalocyanine:C ₇₀ Active Layer. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	2
125	A Colorful Organic Photovoltaic Devices with a 5.48 % Power Conversion Efficiency. , 2019, , .		2
126	Improving Stability of Pentacene Field-Effect Transistors with Post-Annealing. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	1

#	Article	IF	CITATIONS
127	Enhancing Device Performance of Small Molecular Organic Photovoltaic Cells by Controlling the Deposition Rate of Fullerene. Journal of the Chinese Chemical Society, 2013, 60, 160-165.	0.8	1
128	84â€4: <i>Invited Paper:</i> Nearâ€Infrared Organic Upconversion Device with High Image Sensing Quality. Digest of Technical Papers SID International Symposium, 2018, 49, 1147-1150.	0.1	1
129	22â€3: <i>Distinquished Student Paper:</i> Flexible Quantum Dot Light Emitting Devices for Photomedicine. Digest of Technical Papers SID International Symposium, 2018, 49, 275-278.	0.1	1
130	26â€1: <i>Invited Paper:</i> High Efficiency and High Stability Exciplexâ€Based OLEDs. Digest of Technical Papers SID International Symposium, 2018, 49, 328-331.	0.1	1
131	Organic Photodetectors: Vacuumâ€Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Nearâ€Infrared Wavelength (Advanced Optical Materials) Tj ETQq1 1 0	.784614 r	gBT /Overlock
132	Vacuum deposited WO3/Al/Al:Ag anode for efficient red organic light-emitting diodes. Organic Electronics, 2022, 103, 106454.	1.4	1
133	Efficient Thin Polymer Solar Cells with Post-Annealing. Materials Research Society Symposia Proceedings, 2007, 1031, 1.	0.1	Ο
134	Pâ€158: Connecting Architecture for Organic Lightâ€emitting Diodes Integrated with Organic Photovoltaic Device. Digest of Technical Papers SID International Symposium, 2010, 41, 1841-1844.	0.1	0
135	39.1: Solution Processed Molecular Materials in the Fabrication of Flexible Phosphorescence-based OLEDs. Digest of Technical Papers SID International Symposium, 2010, 41, 548.	0.1	Ο
136	High-performance organic photovoltaic device using a new amorphous molecular material of bis(4-(N-(l-naphthyl)phenylamino) phenyl)fumaronitrile. , 2010, , .		0
137	P-180: Low-Reflectance Organic Light-emitting Diode Embedded with Organic Solar Cell. Digest of Technical Papers SID International Symposium, 2011, 42, 1773-1775.	0.1	Ο
138	Low resistance and high work-function WO <inf>3</inf> /Ag/MoO <inf>2</inf> multilayer as transparent anode for bright organic light-emitting diodes. , 2014, , .		0
139	Sensing: Transparent Organic Upconversion Devices for Near-Infrared Sensing (Adv. Mater. 7/2015). Advanced Materials, 2015, 27, 1216-1216.	11.1	Ο
140	Efficiency improvement of current gain in organic up-conversion devices by maintaining hole blocking property at interface of anode/charge generation layer. , 2015, , .		0
141	A wide absorption donor-acceptor active layer for vacuum-deposited organic photovoltaic devices with a 6.8 % power conversion efficiency. , 2015, , .		Ο
142	Highly efficient and inverted tandem organic light-emitting devices using a MoO <inf>3</inf> /Al/MoO <inf>3</inf> charge generation layer. , 2016, , .		0
143	High current gain organic upconversion device using sublimated chloroaluminum phthalocyanine as a charge generation layer. , 2016, , .		0
144	Structural, opto-electronics and magnetic study of Fe/Si doped ZnO. Journal of Materials Science: Materials in Electronics, 2019, 30, 9344-9355.	1.1	0

#	Article	IF	CITATIONS
145	Aggregation Control, Surface Passivation, and Optimization of Device Structure toward Nearâ€Infrared Perovskite Quantumâ€Dot Lightâ€Emitting Diodes with an EQE up to 15.4% (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	11.1	0