
## Parisa Hosseinzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3893682/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chemical Reviews, 2014, 114, 4366-4469.                                                                                                                 | 47.7 | 672       |
| 2  | Comprehensive computational design of ordered peptide macrocycles. Science, 2017, 358, 1461-1466.                                                                                                                                    | 12.6 | 146       |
| 3  | Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 557-581.                                                       | 1.0  | 130       |
| 4  | A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science, 2018, 361, 1098-1101.                                                                                                            | 12.6 | 109       |
| 5  | Design of a single protein that spans the entire 2-V range of physiological redox potentials.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 262-267.                                | 7.1  | 91        |
| 6  | Biochemical and biophysical understanding of metal ion selectivity of DNAzymes. Inorganica Chimica<br>Acta, 2016, 452, 12-24.                                                                                                        | 2.4  | 83        |
| 7  | Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of<br>Unnatural Tyrosine Analogs. Journal of the American Chemical Society, 2015, 137, 4594-4597.                                     | 13.7 | 68        |
| 8  | Reversible S-nitrosylation in an engineered azurin. Nature Chemistry, 2016, 8, 670-677.                                                                                                                                              | 13.6 | 41        |
| 9  | Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6195-6200.          | 7.1  | 41        |
| 10 | Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                          | 7.1  | 41        |
| 11 | Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites.<br>Nature Communications, 2021, 12, 3384.                                                                                     | 12.8 | 37        |
| 12 | Direct EPR Observation of a Tyrosyl Radical in a Functional Oxidase Model in Myoglobin during both<br>H <sub>2</sub> O <sub>2</sub> and O <sub>2</sub> Reactions. Journal of the American Chemical<br>Society, 2014, 136, 1174-1177. | 13.7 | 28        |
| 13 | Long-Range Electron Transfer in Engineered Azurins Exhibits Marcus Inverted Region Behavior.<br>Journal of Physical Chemistry Letters, 2015, 6, 100-105.                                                                             | 4.6  | 25        |
| 14 | A Purple Cupredoxin from <i>Nitrosopumilus maritimus</i> Containing a Mononuclear Type 1 Copper<br>Center with an Open Binding Site. Journal of the American Chemical Society, 2016, 138, 6324-6327.                                 | 13.7 | 23        |
| 15 | Enhancing Mn(II)-Binding and Manganese Peroxidase Activity in a Designed Cytochrome <i>c</i><br>Peroxidase through Fine-Tuning Secondary-Sphere Interactions. Biochemistry, 2016, 55, 1494-1502.                                     | 2.5  | 23        |
| 16 | Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved<br>Nitro-Tyrosine tRNA Synthetase. Journal of Molecular Biology, 2020, 432, 4690-4704.                                                     | 4.2  | 23        |
| 17 | Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome <i>c</i> Peroxidase: Implications for<br>Oxidation of Substrates Bound at a Site Remote from the Heme. Biochemistry, 2014, 53, 3781-3789.                            | 2.5  | 20        |
| 18 | Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer<br>Pathway in Peptidylglycine Monooxygenase. Biochemistry, 2016, 55, 2008-2021.                                                   | 2.5  | 15        |

PARISA HOSSEINZADEH

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of circular permutation on the structure and function of type 1 blue copper center in azurin.<br>Protein Science, 2017, 26, 218-226.                                                        | 7.6  | 12        |
| 20 | Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides. ACS Catalysis, 2021, 11, 4395-4400.                                             | 11.2 | 11        |
| 21 | Computational Design of Structured and Functional Peptide Macrocycles. Methods in Molecular<br>Biology, 2022, 2371, 63-100.                                                                        | 0.9  | 6         |
| 22 | Design of Protein Segments and Peptides for Binding to Protein Targets. Biodesign Research, 2022, 2022, .                                                                                          | 1.9  | 6         |
| 23 | Design of Heteronuclear Metalloenzymes. Methods in Enzymology, 2016, 580, 501-537.                                                                                                                 | 1.0  | 5         |
| 24 | Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chemical Science, 2021, 12, 6569-6579. | 7.4  | 2         |
| 25 | Overview of Methods for Purification and Characterization of Metalloproteins. Current Protocols, 2021, 1, e234.                                                                                    | 2.9  | 2         |