Jin-Sheng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/38932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau. Agronomy, 2022, 12, 783.	3.0	5
2	The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecology and Biogeography, 2022, 31, 486-500.	5.8	11
3	Leaf N:P stoichiometry overrides the effect of individual nutrient content on insect herbivore population dynamics in a Tibetan alpine grassland. Agriculture, Ecosystems and Environment, 2022, 336, 108032.	5.3	1
4	Precipitation determines the magnitude and direction of interannual responses of soil respiration to experimental warming. Plant and Soil, 2021, 458, 75-91.	3.7	16
5	Above-belowground interactions in alpine ecosystems on the roof of the world. Plant and Soil, 2021, 458, 1-6.	3.7	16
6	Dew formation reduction in global warming experiments and the potential consequences. Journal of Hydrology, 2021, 593, 125819.	5.4	16
7	Conserving the Chinese caterpillar fungus under climate change. Biodiversity and Conservation, 2021, 30, 547-550.	2.6	8
8	Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 2021, 27, 2241-2253.	9.5	48
9	Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios. MBio, 2021, 12, .	4.1	10
10	Above―and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 2021, 30, 1418-1429.	5.8	40
11	Effects of biotic and abiotic factors on forest biomass fractions. National Science Review, 2021, 8, nwab025.	9.5	28
12	Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biology and Biochemistry, 2021, 156, 108213.	8.8	53
13	Short-term warming increases root-associated fungal community dissimilarities among host plant species on the Qinghai-Tibetan Plateau. Plant and Soil, 2021, 466, 597-611.	3.7	12
14	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial βâ€diversity. Ecosphere, 2021, 12, e03644.	2.2	12
15	Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications, 2021, 12, 5350.	12.8	164
16	Satelliteâ€derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades. Ecology, 2021, 102, e03518.	3.2	17
17	Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2021, 167, 104061.	4.3	14
18	Lowered water table causes species substitution while nitrogen amendment causes species loss in alpine wetland microbial communities. Pedosphere, 2021, 31, 912-922.	4.0	6

#	Article	IF	CITATIONS
19	Simulating warmer and drier climate increases root production but decreases root decomposition in an alpine grassland on the Tibetan plateau. Plant and Soil, 2021, 458, 59-73.	3.7	24
20	Net neutral carbon responses to warming and grazing in alpine grassland ecosystems. Agricultural and Forest Meteorology, 2020, 280, 107792.	4.8	19
21	Temporal variation in soil respiration and its sensitivity to temperature along a hydrological gradient in an alpine wetland of the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 282-283, 107854.	4.8	17
22	Vertical variations in plant- and microbial-derived carbon components in grassland soils. Plant and Soil, 2020, 446, 441-455.	3.7	15
23	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	9.5	50
24	Variation in the methods leads to variation in the interpretation of biodiversity–ecosystem multifunctionality relationships. Journal of Plant Ecology, 2020, 13, 431-441.	2.3	17
25	Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology and Evolution, 2020, 35, 908-918.	8.7	107
26	Phosphorus alleviation of nitrogenâ€suppressed methane sink in global grasslands. Ecology Letters, 2020, 23, 821-830.	6.4	18
27	Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biology and Biochemistry, 2020, 144, 107764.	8.8	95
28	Early season precipitation accounts for the variability of fine-root traits in a Tibetan alpine grassland. Environmental and Experimental Botany, 2020, 172, 103991.	4.2	3
29	Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. Science of the Total Environment, 2020, 714, 136794.	8.0	69
30	Responses of soil microbial communities and functions associated with organic carbon mineralization to nitrogen addition in a Tibetan grassland. Pedosphere, 2020, 30, 214-225.	4.0	31
31	Variations in the nitrogen saturation threshold of soil respiration in grassland ecosystems. Biogeochemistry, 2020, 148, 311-324.	3.5	19
32	Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 2020, 23, 701-710.	6.4	124
33	Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65, 3898-3908.	0.7	15
34	Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, 2019, 444, 21-37.	3.7	38
35	Archaea Enhance the Robustness of Microbial Coâ€occurrence Networks in Tibetan Plateau Soils. Soil Science Society of America Journal, 2019, 83, 1093-1099.	2.2	37
36	A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 2019, 100, e02812.	3.2	24

#	Article	IF	CITATIONS
37	Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Global Change Biology, 2019, 25, 4383-4393.	9.5	94
38	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
39	Environmental filtering of bacterial functional diversity along an aridity gradient. Scientific Reports, 2019, 9, 866.	3.3	33
40	The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiology Ecology, 2019, 95, .	2.7	26
41	Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant and Soil, 2019, 439, 325-338.	3.7	18
42	Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 271, 92-101.	4.8	34
43	Distribution and Preservation of Root―and Shootâ€Derived Carbon Components in Soils Across the Chineseâ€Mongolian Grasslands. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 420-431.	3.0	14
44	Distinct methanotrophic communities exist in habitats with different soil water contents. Soil Biology and Biochemistry, 2019, 132, 143-152.	8.8	65
45	Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau. Science of the Total Environment, 2019, 650, 303-312.	8.0	94
46	Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere, 2019, 10, e02543.	2.2	38
47	Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	2.7	83
48	Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytologist, 2019, 221, 1574-1584.	7.3	42
49	Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology and Evolution, 2019, 34, 200-210.	8.7	140
50	Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4027-4032.	7.1	368
51	Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4051-4056.	7.1	431
52	Convergence in temperature sensitivity of soil respiration: Evidence from the Tibetan alpine grasslands. Soil Biology and Biochemistry, 2018, 122, 50-59.	8.8	17
53	Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau. Plant and Soil, 2018, 425, 177-188.	3.7	29
54	No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Science of the Total Environment, 2018, 625, 1361-1368.	8.0	17

#	Article	IF	CITATIONS
55	Largeâ€Scale Distribution of Molecular Components in Chinese Grassland Soils: The Influence of Input and Decomposition Processes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 239-255.	3.0	29
56	Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 2018, 55, 1486-1497.	4.0	38
57	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	12.6	433
58	Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis. Pedobiologia, 2018, 71, 50-58.	1.2	14
59	Existing Climate Change Will Lead to Pronounced Shifts in the Diversity of Soil Prokaryotes. MSystems, 2018, 3, .	3.8	41
60	Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology and Biochemistry, 2018, 126, 82-90.	8.8	45
61	Estimating Plant Traits of Alpine Grasslands on the Qinghai-Tibetan Plateau Using Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 2263-2275.	4.9	16
62	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	12.8	169
63	Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181240.	2.6	169
64	Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 2017, 206, 143-150.	4.1	52
65	Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. Soil Biology and Biochemistry, 2017, 107, 218-225.	8.8	77
66	Can niche plasticity promote biodiversity–productivity relationships through increased complementarity?. Ecology, 2017, 98, 1104-1116.	3.2	73
67	Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Scientific Reports, 2017, 7, 43524.	3.3	53
68	Linking above―and belowground traits to soil and climate variables: an integrated database on <scp>C</scp> hina's grassland species. Ecology, 2017, 98, 1471-1471.	3.2	19
69	Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau. Scientific Reports, 2017, 7, 46407.	3.3	38
70	Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8, 15378.	12.8	348
71	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	2.3	102
72	Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist, 2017, 215, 756-765.	7.3	248

#	Article	IF	CITATIONS
73	Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Functional Ecology, 2017, 31, 2147-2156.	3.6	61
74	Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. Journal of Plant Ecology, 2017, 10, 36-46.	2.3	30
75	In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 2017, 111, 66-77.	8.8	36
76	On the controls of abundance for soilâ€dwelling organisms on the Tibetan Plateau. Ecosphere, 2017, 8, e01901.	2.2	11
77	Warm- and cold- season grazing affect soil respiration differently in alpine grasslands. Agriculture, Ecosystems and Environment, 2017, 248, 136-143.	5.3	19
78	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
79	Nitrous oxide emissions from different land uses affected by managements on the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2017, 246, 133-141.	4.8	7
80	Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 2017, 8, 15972.	12.8	147
81	Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biology and Biochemistry, 2017, 104, 141-151.	8.8	72
82	Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena, 2017, 149, 221-231.	5.0	30
83	Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma, 2017, 288, 166-174.	5.1	44
84	Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 2017, 23, 815-829.	9.5	75
85	Critical climate periods for grassland productivity on China's Loess Plateau. Agricultural and Forest Meteorology, 2017, 233, 101-109.	4.8	61
86	Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 2017, 10, 28-35.	2.3	70
87	Traitâ€abundance relation in response to nutrient addition in a Tibetan alpine meadow: The importance of species tradeâ€off in resource conservation and acquisition. Ecology and Evolution, 2017, 7, 10575-10581.	1.9	13
88	Biodiversity–ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 2017, 10, 1-3.	2.3	4
89	Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau. Frontiers in Microbiology, 2016, 7, 1032.	3.5	81
90	Grazingâ€induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 2016, 53, 1554-1564.	4.0	65

#	Article	IF	CITATIONS
91	Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 2016, 6, 38020.	3.3	13
92	The biogeography of soil archaeal communities on the eastern Tibetan Plateau. Scientific Reports, 2016, 6, 38893.	3.3	66
93	Distribution of fatty acids in the alpine grassland soils of the Qinghai-Tibetan Plateau. Science China Earth Sciences, 2016, 59, 1329-1338.	5.2	2
94	Tradeoffs between forage quality and soil fertility: Lessons from Himalayan rangelands. Agriculture, Ecosystems and Environment, 2016, 234, 31-39.	5.3	31
95	Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Climatic Change, 2016, 138, 617-632.	3.6	10
96	Foliar phosphorus content predicts species relative abundance in P-limited Tibetan alpine meadows. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 22, 47-54.	2.7	21
97	Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2016, 52, 1059-1072.	4.3	121
98	Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau. Scientific Reports, 2016, 6, 34290.	3.3	19
99	Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau. Scientific Reports, 2016, 6, 34786.	3.3	37
100	Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau. Scientific Reports, 2016, 6, 31438.	3.3	31
101	Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Applied Soil Ecology, 2016, 107, 205-213.	4.3	82
102	Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China. Plant and Soil, 2016, 400, 337-350.	3.7	45
103	Predicting soil respiration for the Qinghai-Tibet Plateau: An empirical comparison of regression models. Pedobiologia, 2016, 59, 41-49.	1.2	10
104	Spatio-temporal water uptake patterns of tree saplings are not altered by interspecific interaction in the early stage of a subtropical forest. Forest Ecology and Management, 2016, 367, 52-61.	3.2	14
105	Grazing increases functional richness but not functional divergence in Tibetan alpine meadow plant communities. Biodiversity and Conservation, 2016, 25, 2441-2452.	2.6	45
106	Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 2016, 24, 55-71.	0.6	15
107	Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau. PeerJ, 2016, 4, e2226.	2.0	29
108	A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 2016, 24, 72-84.	0.6	6

#	Article	IF	CITATIONS
109	The effects of grazing on foliar trait diversity and niche differentiation in Tibetan alpine meadows. Ecosphere, 2015, 6, 1-15.	2.2	35
110	Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environmental Research Letters, 2015, 10, 085007.	5.2	44
111	Distribution and conservation of threatened plants in China. Biological Conservation, 2015, 192, 454-460.	4.1	80
112	Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1475-1490.	3.0	77
113	Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 2015, 12, 3141-3151.	3.3	74
114	A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau. PLoS ONE, 2015, 10, e0126372.	2.5	16
115	Leaf P increase outpaces leaf N in an Inner Mongolia grassland over 27 years. Biology Letters, 2015, 11, 20140981.	2.3	13
116	The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 2015, 6, 8159.	12.8	471
117	Distribution and conservation of orchid species richness in China. Biological Conservation, 2015, 181, 64-72.	4.1	105
118	Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. Journal of Plant Ecology, 2015, 8, 401-410.	2.3	26
119	Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences, 2014, 11, 2003-2016.	3.3	54
120	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	5.2	232
121	Pedogenesis, permafrost, substrate and topography: Plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan Plateau. Geoderma, 2014, 226-227, 300-316.	5.1	34
122	No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry, 2014, 117, 39-54.	3.5	73
123	Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 2014, 175, 445-455.	2.0	72
124	Large-scale patterns of stomatal traits in Tibetan and Mongolian grassland species. Basic and Applied Ecology, 2014, 15, 122-132.	2.7	21
125	Nonâ€growingâ€season soil respiration is controlled by freezing and thawing processes in the summer monsoonâ€dominated Tibetan alpine grassland. Global Biogeochemical Cycles, 2014, 28, 1081-1095. ————————————————————————————————————	4.9	88
126	Large scale patterns of forage yield and quality across Chinese grasslands. Science Bulletin, 2013, 58, 1187-1199.	1.7	32

#	Article	IF	CITATIONS
127	A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 2013, 181, 81-90.	7.5	59
128	Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau, China: distribution and influence of environmental factors. Environmental Sciences: Processes and Impacts, 2013, 15, 661.	3.5	24
129	Legumes in Chinese Natural Grasslands: Species, Biomass, and Distribution. Rangeland Ecology and Management, 2013, 66, 648-656.	2.3	17
130	Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data. Climatic Change, 2013, 119, 435-449.	3.6	59
131	Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecological Indicators, 2013, 26, 117-125.	6.3	48
132	Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China. Journal of Plant Ecology, 2013, 6, 220-231.	2.3	26
133	UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands. Ecology and Evolution, 2013, 3, 4696-4710.	1.9	19
134	NEECF: a project of nutrient enrichment experiments in China's forests. Journal of Plant Ecology, 2013, 6, 428-435.	2.3	61
135	Carbon patterns and processes in East Asian ecosystems: multi-scale approaches. Journal of Plant Ecology, 2013, 6, 323-324.	2.3	2
136	Effect of clear-cutting silviculture on soil respiration in a subtropical forest of China. Journal of Plant Ecology, 2013, 6, 335-348.	2.3	13
137	Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau. PLoS ONE, 2013, 8, e57024.	2.5	58
138	Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences, 2012, 9, 2287-2299.	3.3	105
139	Carbon cycling of Chinese forests: From carbon storage, dynamics to models. Science China Life Sciences, 2012, 55, 188-190.	4.9	11
140	Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns. PLoS ONE, 2012, 7, e34968.	2.5	108
141	Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 2012, 21, 416-427.	5.8	32
142	Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands. Science China Life Sciences, 2012, 55, 68-79.	4.9	25
143	Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. Journal of Environmental Monitoring, 2011, 13, 175-181.	2.1	77
144	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	5.4	222

#	Article	IF	CITATIONS
145	Leaf respiration/photosynthesis relationship and variation: an investigation of 39 woody and herbaceous species in east subtropical China. Trees - Structure and Function, 2011, 25, 301-310.	1.9	15
146	Relationship between leaf phosphorus concentration and soil phosphorus availability across Inner Mongolia grassland. Chinese Journal of Plant Ecology, 2011, 35, 1-8.	0.6	16
147	Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 2010, 123, 551-561.	2.4	57
148	Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. Journal of Plant Research, 2010, 123, 509-517.	2.4	87
149	Environmental factors covary with plant diversity–productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 2010, 19, 233-243.	5.8	150
150	Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology, 2009, 2, 169-171.	2.3	30
151	Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae). Genetica, 2009, 135, 233-243.	1.1	48
152	Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15, 2723-2729.	9.5	135
153	Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 2009, 15, 3001-3017.	9.5	159
154	Taxonomic, phylogenetic, and environmental tradeâ€offs between leaf productivity and persistence. Ecology, 2009, 90, 2779-2791.	3.2	69
155	Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 2008, 51, 263-270.	1.3	99
156	Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155, 301-310.	2.0	280
157	Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14, 1592-1599.	9.5	462
158	Hierarchical reliability in experimental plant assemblages. Journal of Plant Ecology, 2008, 1, 59-65.	2.3	39
159	Interactive effects of elevated CO2 and temperature on the anatomical characteristics of leaves in eleven species. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 333-339.	0.2	9
160	Phytogeographical Analysis of Seed Plant Genera in China. Annals of Botany, 2006, 98, 1073-1084.	2.9	23
161	Leafâ€Level Physiology, Biomass, and Reproduction ofPhytolacca americanaunder Conditions of Elevated Carbon Dioxide and Increased Nocturnal Temperature. International Journal of Plant Sciences, 2006, 167, 1011-1020.	1.3	12
162	Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 2006, 9, 1146-1156.	6.4	1,995

#	Article	lF	CITATIONS
163	A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170, 835-848.	7.3	159
164	Microstructure and grain refining performance of Al–5Ti–1B master alloy prepared under high-intensity ultrasound. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 326-331.	5.6	50
165	Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 2006, 74, 253-267.	3.6	271
166	Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149, 115-122.	2.0	210
167	CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds. Functional Ecology, 2005, 19, 437-444.	3.6	26
168	Density may alter diversity–productivity relationships in experimental plant communities. Basic and Applied Ecology, 2005, 6, 505-517.	2.7	61
169	Differential drought responses between saplings and adult trees in four co-occurring species of New England. Trees - Structure and Function, 2005, 19, 442-450.	1.9	55
170	Leaf‣evel Physiology, Biomass, and Reproduction of Phytolacca americana under Conditions of Elevated CO2 and Altered Temperature Regimes. International Journal of Plant Sciences, 2005, 166, 615-622.	1.3	35
171	Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 2005, 32, .	4.0	179
172	Issues and prospects of belowground ecology with special reference to global climate change. Science Bulletin, 2004, 49, 1891.	1.7	2
173	Issues and prospects of belowground ecology with special reference to global climate change. Science Bulletin, 2004, 49, 1891-1899.	1.7	33
174	Increasing terrestrial vegetation activity in China, 1982?1999. Science in China Series C: Life Sciences, 2004, 47, 229.	1.3	25
175	Densityâ€dependent responses of reproductive allocation to elevated atmospheric CO 2 in Phytolacca americana. New Phytologist, 2003, 157, 229-239.	7.3	28
176	Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos, 2002, 97, 337-348.	2.7	84
177	Phosphorus does not alleviate the negative effect of nitrogen enrichment on legume performance in an alpine grassland. Journal of Plant Ecology, 0, , rtw089.	2.3	15