M Elizabeth Halloran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892899/publications.pdf

Version: 2024-02-01

103 papers 11,268 citations

35 h-index 95 g-index

115 all docs 115
docs citations

115 times ranked 14781 citing authors

#	Article	IF	CITATIONS
1	The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020, 368, 395-400.	6.0	2,784
2	Containing Pandemic Influenza at the Source. Science, 2005, 309, 1083-1087.	6.0	1,044
3	Antibody-dependent enhancement of severe dengue disease in humans. Science, 2017, 358, 929-932.	6.0	800
4	Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 2020, 4, 964-971.	6.2	605
5	Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infectious Diseases, The, 2020, 20, 793-802.	4.6	541
6	Toward Causal Inference With Interference. Journal of the American Statistical Association, 2008, 103, 832-842.	1.8	456
7	Containing Bioterrorist Smallpox. Science, 2002, 298, 1428-1432.	6.0	324
8	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	13.7	323
9	Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.	6.0	303
10	Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak. PLOS Currents, 2014, 6, .	1.4	251
11	Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4334-E4343.	3.3	249
12	Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infectious Diseases, The, 2015, 15, 204-211.	4.6	226
13	Causal Inference in Infectious Diseases. Epidemiology, 1995, 6, 142-151.	1.2	209
14	Study Designs for Dependent Happenings. Epidemiology, 1991, 2, 331-338.	1.2	198
15	Design and Analysis of Vaccine Studies. Statistics in the Health Sciences, 2010, , .	0.2	189
16	Zika virus infection enhances future risk of severe dengue disease. Science, 2020, 369, 1123-1128.	6.0	171
17	Inferring high-resolution human mixing patterns for disease modeling. Nature Communications, 2021, 12, 323.	5 . 8	161
18	The dengue vaccine pipeline: Implications for the future of dengue control. Vaccine, 2015, 33, 3293-3298.	1.7	109

#	Article	IF	CITATIONS
19	Immune correlates of protection for dengue: State of the art and research agenda. Vaccine, 2017, 35, 4659-4669.	1.7	81
20	A Frailty Mixture Model for Estimating Vaccine Efficacy. Journal of the Royal Statistical Society Series C: Applied Statistics, 1996, 45, 165.	0.5	73
21	Estimating Efficacy of Trivalent, Cold-adapted, Influenza Virus Vaccine (CAIV-T) against Influenza A (H1N1) and B Using Surveillance Cultures. American Journal of Epidemiology, 2003, 158, 305-311.	1.6	72
22	Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4488-4493.	3.3	70
23	Community interventions and the epidemic prevention potential. Vaccine, 2002, 20, 3254-3262.	1.7	64
24	Simulations for designing and interpreting intervention trials in infectious diseases. BMC Medicine, 2017, 15, 223.	2.3	64
25	Creating a Framework for Conducting Randomized Clinical Trials during Disease Outbreaks. New England Journal of Medicine, 2020, 382, 1366-1369.	13.9	63
26	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 2021, 600, 127-132.	13.7	61
27	Optimal vaccine trial design when estimating vaccine efficacy for susceptibility and infectiousness from multiple populations., 1998, 17, 1121-1136.		55
28	Containing Ebola at the Source with Ring Vaccination. PLoS Neglected Tropical Diseases, 2016, 10, e0005093.	1.3	54
29	Assessing effects of cholera vaccination in the presence of interference. Biometrics, 2014, 70, 731-741.	0.8	50
30	Dependent Happenings: a Recent Methodological Review. Current Epidemiology Reports, 2016, 3, 297-305.	1.1	48
31	Effectiveness of a live oral human rotavirus vaccine after programmatic introduction in Bangladesh: A cluster-randomized trial. PLoS Medicine, 2017, 14, e1002282.	3.9	46
32	Household Transmission of Vibrio cholerae in Bangladesh. PLoS Neglected Tropical Diseases, 2014, 8, e3314.	1.3	45
33	Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Neglected Tropical Diseases, 2018, 12, e0006570.	1.3	44
34	Projected Impact of Dengue Vaccination in Yucat \tilde{A}_i n, Mexico. PLoS Neglected Tropical Diseases, 2016, 10, e0004661.	1.3	44
35	Design of vaccine efficacy trials during public health emergencies. Science Translational Medicine, 2019, 11, .	5.8	41
36	Interference and Sensitivity Analysis. Statistical Science, 2014, 29, 687-706.	1.6	37

#	Article	IF	CITATIONS
37	Rotavirus vaccine effectiveness in low-income settings: An evaluation of the test-negative design. Vaccine, 2017, 35, 184-190.	1.7	37
38	Measuring vaccine efficacy from epidemics of acute infectious agents. Statistics in Medicine, 1993, 12, 249-263.	0.8	36
39	Identifying Areas with Elevated Disease Incidence Rates Using Empirical Bayes Estimators. Geographical Analysis, 1996, 28, 187-199.	1.9	36
40	Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees. PLoS Computational Biology, 2016, 12, e1004869.	1.5	36
41	Estimating Vaccine Efficacy From Secondary Attack Rates. Journal of the American Statistical Association, 2003, 98, 38-46.	1.8	35
42	Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35
43	Augmented HIV vaccine trial design for estimating reduction in infectiousness and protective efficacy. , 1998, 17, 185-200.		32
44	Ensemble forecast modeling for the design of COVID-19 vaccine efficacy trials. Vaccine, 2020, 38, 7213-7216.	1.7	32
45	Dengue and Zika virus infections in children elicit cross-reactive protective and enhancing antibodies that persist long term. Science Translational Medicine, 2021, 13, eabg9478.	5.8	32
46	The First Reported Outbreak of Chikungunya in the U.S. Virgin Islands, 2014–2015. American Journal of Tropical Medicine and Hygiene, 2016, 95, 885-889.	0.6	30
47	Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Medicine, 2016, 14, 130.	2.3	30
48	Designing effective control of dengue with combined interventions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3319-3325.	3.3	29
49	Dependency of Vaccine Efficacy on Preexposure and Age: A Closer Look at a Tetravalent Dengue Vaccine. Clinical Infectious Diseases, 2018, 66, 178-184.	2.9	28
50	Estimating the cost of illness and burden of disease associated with the 2014–2015 chikungunya outbreak in the U.S. Virgin Islands. PLoS Neglected Tropical Diseases, 2019, 13, e0007563.	1.3	28
51	Empirical bayes estimators for spatially correlated incidence rates. Environmetrics, 1994, 5, 381-398.	0.6	27
52	Effects of infection history on dengue virus infection and pathogenicity. Nature Communications, 2019, 10, 1246.	5.8	26
53	Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study. The Lancet Global Health, 2020, 8, e1081-e1089.	2.9	26
54	School-Located Influenza Vaccination Reduces Community Risk for Influenza and Influenza-Like Illness Emergency Care Visits. PLoS ONE, 2014, 9, e114479.	1.1	25

#	Article	IF	CITATIONS
55	Comparative Effectiveness of Different Strategies of Oral Cholera Vaccination in Bangladesh: A Modeling Study. PLoS Neglected Tropical Diseases, 2014, 8, e3343.	1.3	24
56	A Markov model for measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV vaccines., 1999, 18, 53-68.		23
57	One versus two doses: What is the best use of vaccine in an influenza pandemic?. Epidemics, 2015, 13, 17-27.	1.5	22
58	Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: Baseline and first year follow-up. PLoS Neglected Tropical Diseases, 2018, 12, e0006847.	1.3	22
59	Causal Inference for Vaccine Effects on Infectiousness. International Journal of Biostatistics, 2012, 8, 1-40.	0.4	21
60	Emerging, evolving, and established infectious diseases and interventions. Science, 2014, 345, 1292-1294.	6.0	18
61	Ebola and beyond. Science, 2015, 348, 46-48.	6.0	18
62	Estimating Strainâ€Specific and Overall Efficacy of Polyvalent Vaccines Against Recurrent Pathogens From a Crossâ€Sectional Study. Biometrics, 2013, 69, 235-244.	0.8	17
63	Meningococcal carriage within households in the African meningitis belt: A longitudinal pilot study. Journal of Infection, 2018, 76, 140-148.	1.7	17
64	The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials, 2020, 21, 839.	0.7	16
65	Effectiveness of Seasonal Influenza Vaccination in Children in Senegal During a Year of Vaccine Mismatch: A Cluster-randomized Trial. Clinical Infectious Diseases, 2019, 69, 1780-1788.	2.9	15
66	Seroprevalence of Dengue Antibodies in Three Urban Settings in Yucatan, Mexico. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1202-1208.	0.6	14
67	Challenges of evaluating and modelling vaccination in emerging infectious diseases. Epidemics, 2021, 37, 100506.	1.5	14
68	Malaria vaccines: lessons from field trials. Cadernos De Saude Publica, 1994, 10, S310-S326.	0.4	13
69	Genomic epidemiology supports multiple introductions and cryptic transmission of Zika virus in Colombia. BMC Infectious Diseases, 2019, 19, 963.	1.3	12
70	Successes and Failures of the Live-attenuated Influenza Vaccine: Can We Do Better?. Clinical Infectious Diseases, 2020, 70, 1029-1037.	2.9	12
71	Disseminated Effects in Agent-Based Models: A Potential Outcomes Framework and Application to Inform Preexposure Prophylaxis Coverage Levels for HIV Prevention. American Journal of Epidemiology, 2021, 190, 939-948.	1.6	12
72	Estimating population effects of vaccination using large, routinely collected data. Statistics in Medicine, 2018, 37, 294-301.	0.8	11

#	Article	IF	CITATIONS
73	Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Medicine, 2018, 16, 195.	2.3	11
74	Comparing Biomarkers as Trial Level General Surrogates. Biometrics, 2016, 72, 1046-1054.	0.8	9
75	Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016). PLoS Neglected Tropical Diseases, 2018, 12, e0006748.	1.3	9
76	Efficacy of a bivalent killed whole-cell cholera vaccine over five years: a re-analysis of a cluster-randomized trial. BMC Infectious Diseases, 2018, 18, 84.	1.3	9
77	Semiparametric Methods for Multiple Exposure Mismeasurement and a Bivariate Outcome in HIV Vaccine Trials. Biometrics, 1999, 55, 94-101.	0.8	8
78	Intermediate levels of vaccination coverage may minimize seasonal influenza outbreaks. PLoS ONE, 2018, 13, e0199674.	1.1	8
79	Impact of Rotavirus Vaccine Introduction in Children Less Than 2 Years of Age Presenting for Medical Care With Diarrhea in Rural Matlab, Bangladesh. Clinical Infectious Diseases, 2019, 69, 2059-2070.	2.9	8
80	Semi-parametric models for mismeasured exposure information in vaccine trials., 1998, 17, 2335-2352.		6
81	Design of vaccine trials during outbreaks with and without a delayed vaccination comparator. Annals of Applied Statistics, 2018, 12, 330-347.	0.5	6
82	Estimates of Inactivated Influenza Vaccine Effectiveness Among Children in Senegal: Results From 2 Consecutive Cluster-Randomized Controlled Trials in 2010 and 2011. Clinical Infectious Diseases, 2021, 72, e959-e969.	2.9	6
83	Protecting the herd with vaccination. Science, 2022, 375, 1088-1089.	6.0	6
84	Estimands and inference in clusterâ€randomized vaccine trials. Pharmaceutical Statistics, 2020, 19, 710-719.	0.7	5
85	Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies. Vaccine, 2016, 34, 3796-3802.	1.7	4
86	Cost-effectiveness of live-attenuated influenza vaccination among school-age children. Vaccine, 2021, 39, 447-456.	1.7	4
87	Improving adolescent human papillomavirus (HPV) immunization uptake in school-based health centers through awareness campaigns. Vaccine, 2021, 39, 1765-1772.	1.7	4
88	An Assessment of Household and Individual-Level Mosquito Prevention Methods during the Chikungunya Virus Outbreak in the United States Virgin Islands, 2014–2015. American Journal of Tropical Medicine and Hygiene, 2018, 98, 845-848.	0.6	4
89	The case for a typhoid vaccine probe study and overview of design elements. Vaccine, 2015, 33, C30-C35.	1.7	3
90	Optimizing and evaluating biomarker combinations as trialâ€level general surrogates. Statistics in Medicine, 2019, 38, 1135-1146.	0.8	3

#	Article	IF	CITATIONS
91	Multigroup, Adaptively Randomized Trials Are Advantageous for Comparing Coronavirus Disease 2019 (COVID-19) Interventions. Annals of Internal Medicine, 2020, 173, 576-577.	2.0	3
92	Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring. Biometrics, 2022, 78, 777-788.	0.8	3
93	Using simulated infectious disease outbreaks to inform site selection and sample size for individually randomized vaccine trials during an ongoing epidemic. Clinical Trials, 2021, 18, 630-638.	0.7	3
94	Reply to Aguiar and Stollenwerk. Clinical Infectious Diseases, 2018, 66, 642-642.	2.9	2
95	Validity of university students' self-reported vaccination status after a meningococcal B outbreak. Journal of American College Health, 2020, , 1-6.	0.8	2
96	Comment on AIDS and COVIDâ€19: A tale of two pandemics and the role of statisticians. Statistics in Medicine, 2021, 40, 2524-2525.	0.8	2
97	Discussion on "Estimating vaccine efficacy over time after a randomized study is unblinded―by Anastasios A. Tsiatis and Marie Davidian. Biometrics, 2022, 78, 839-840.	0.8	2
98	A Bayesian approach to estimating causal vaccine effects on binary postâ€infection outcomes. Statistics in Medicine, 2016, 35, 53-64.	0.8	1
99	Reply to Skowronski and De Serres. Clinical Infectious Diseases, 2019, 69, 2231-2232.	2.9	1
100	Estimating population-level effects of the acellular pertussis vaccine using routinely collected immunization data. Clinical Infectious Diseases, 2021, 73, 2101-2107.	2.9	1
101	Evaluation and comparison of predictive individual-level general surrogates. Biostatistics, 2018, 19, 307-324.	0.9	0
102	Reply to Lindsey, Höschler, and de Silva. Clinical Infectious Diseases, 2020, 70, 2236-2237.	2.9	0
103	Comment on Laber et al. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 776.	0.5	O