
Alex D Sheftel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892583/publications.pdf Version: 2024-02-01

ALEY D SHEETEL

#	Article	IF	CITATIONS
1	Do Mammalian Cells Really Need to Export and Import Heme?. Trends in Biochemical Sciences, 2017, 42, 395-406.	3.7	57
2	Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells. Haematologica, 2017, 102, 1314-1323.	1.7	19
3	Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run―mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2859-2867.	1.9	89
4	Endosome-Mitochondria Interface Controls Intracellular Iron Trafficking in Erythroid Cells. Blood, 2016, 128, 75-75.	0.6	0
5	Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cellular and Molecular Life Sciences, 2015, 72, 983-997.	2.4	33
6	Interaction of Transferrin-Endosomes with Mitochondria: Implications for Iron Transport to Ferrochelatase in Erythroid Cells. Blood, 2015, 126, 407-407.	0.6	2
7	Prognostic Usefulness of Insulin-Like Growth Factor-Binding Protein 7 in Heart Failure With Reduced Ejection Fraction: A Novel Biomarker of Myocardial Diastolic Function?. American Journal of Cardiology, 2014, 114, 1543-1549.	0.7	60
8	HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nature Communications, 2014, 5, 3430.	5.8	31
9	Erythroid cells use endosome-derived iron via the direct interaction of endosomes with mitochondria for heme synthesis. Experimental Hematology, 2014, 42, S57.	0.2	1
10	Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood, 2014, 123, 2269-2277.	0.6	31
11	Further Elucidation of the Mechanism of Iron Transport Form Plasma Transferrin to Mitochondrial Ferrochelatase: Further Evidence for the "Kiss and Run―Hypothesis. Blood, 2014, 124, 4023-4023.	0.6	2
12	Human CIA2A-FAM96A and CIA2B-FAM96B Integrate Iron Homeostasis and Maturation of Different Subsets of Cytosolic-Nuclear Iron-Sulfur Proteins. Cell Metabolism, 2013, 18, 187-198.	7.2	144
13	Erythropoiesis, Hemoglobin Synthesis, and Erythroid Mitochondrial Iron Homeostasis. Handbook of Porphyrin Science, 2013, , 41-84.	0.3	4
14	The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Molecular Biology of the Cell, 2012, 23, 1157-1166.	0.9	185
15	The long history of iron in the Universe and in health and disease. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 161-187.	1.1	166
16	Erythroid Iron Metabolism. , 2012, , 191-209.		5
17	Further Evidence for the "Kiss and Run―Hypothesis of Iron Delivery to Mitochondria in Erythroid Cells,. Blood, 2011, 118, 3178-3178.	0.6	0
18	Ferritin does not donate its iron for haem synthesis in macrophages. Biochemical Journal, 2010, 429, 463-471.	1.7	11

ALEX D SHEFTEL

#	Article	IF	CITATIONS
19	Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11775-11780.	3.3	279
20	Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10775-10782.	3.3	413
21	Iron–sulfur proteins in health and disease. Trends in Endocrinology and Metabolism, 2010, 21, 302-314.	3.1	169
22	Intraendosomal Transferrin Saturation Governs Interorganellar Association for Iron Delivery In Erythroid Cells. Blood, 2010, 116, 4253-4253.	0.6	0
23	Chapter 12 twelve Controlled Expression of Ironâ€Sulfur Cluster Assembly Components for Respiratory Chain Complexes in Mammalian Cells. Methods in Enzymology, 2009, 456, 209-231.	0.4	21
24	Mitochondrial Iron Metabolism and Sideroblastic Anemia. Acta Haematologica, 2009, 122, 120-133.	0.7	42
25	Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Molecular and Cellular Biology, 2009, 29, 6059-6073.	1.1	184
26	The power plant of the cell is also a smithy: The emerging role of mitochondria in cellular iron homeostasis. Annals of Medicine, 2009, 41, 82-99.	1.5	43
27	Nramp1 equips macrophages for efficient iron recycling. Experimental Hematology, 2008, 36, 929-937.	0.2	46
28	Non-heme Induction of Heme Oxygenase-1 Does Not Alter Cellular Iron Metabolism. Journal of Biological Chemistry, 2007, 282, 10480-10486.	1.6	46
29	Direct interorganellar transfer of iron from endosome to mitochondrion. Blood, 2007, 110, 125-132.	0.6	231
30	Interorganellar association mediates the efficient transfer of iron from endosome to mitochondria. FASEB Journal, 2007, 21, A1348.	0.2	0
31	The Role of Nramp1 in Erythrophagocytosis Blood, 2007, 110, 3851-3851.	0.6	0
32	In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin. Blood, 2006, 108, 2428-2434.	0.6	49
33	It's hepcidin again, but is it the only master?. Blood, 2006, 108, 3631-3632.	0.6	1
34	Iron regulatory protein-independent regulation of ferritin synthesis by nitrogen monoxide. FEBS Journal, 2006, 273, 3828-3836.	2.2	21
35	The anemia of "haemoglobin-deficit―(hbd/hbd) mice is caused by a defect in transferrin cycling. Experimental Hematology, 2006, 34, 593-598.	0.2	41
36	Direct Interorganellar Transfer of Iron from Endosome to Mitochondrion Blood, 2006, 108, 268-268.	0.6	0

ALEX D SHEFTEL

#	Article	IF	CITATIONS
37	Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood, 2005, 105, 2161-2167.	0.6	161
38	Functional consequences of the human DMT1 (SLC11A2) mutation on protein expression and iron uptake. Blood, 2005, 106, 3985-3987.	0.6	44
39	Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria. Blood, 2005, 105, 368-375.	0.6	113
40	DMT1 Mutation in a Patient with Hypochromic Microcytic Anemia: Functional Consequences and Response to Erythropoietin Blood, 2005, 106, 3587-3587.	0.6	0
41	Effects of Mitochondrial Ferritin Expression on Tumor Iron Metabolism and Tumor Growth in Nude Mice Xenografts Blood, 2005, 106, 3582-3582.	0.6	0
42	Non-Heme Induction of HO-1 in Macrophages Does Not Apparently Alter Cellular Iron Levels Blood, 2004, 104, 3693-3693.	0.6	0
43	Iron Acquisition in Reticulocytes: Evidence for a Kiss and Run Mechanism Blood, 2004, 104, 3189-3189.	0.6	0
44	Overexpression of Mitochondrial Ferritin Causes Cytosolic Iron Starvation and Changes Cellular Iron Homeostatis Blood, 2004, 104, 3195-3195.	0.6	0
45	Iron targeting to mitochondria in erythroid cells. Biochemical Society Transactions, 2002, 30, 735-738.	1.6	22