
Danielle Schweke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating the role of hydrogen species originating from water vapor in the oxidation mechanism of cerium. Corrosion Science, 2022, 196, 110030.	6.6	5
2	Cerium metal oxidation studied by IR reflection-absorption and Raman scattering spectroscopies. Journal of Physics Condensed Matter, 2022, 34, 324002.	1.8	2
3	Comprehensive Study of the Ceria–H ₂ System: Effect of the Reaction Conditions on the Reduction Extent and Intermediates. Journal of Physical Chemistry C, 2020, 124, 6180-6187.	3.1	26
4	Coke-free methane dry reforming over nano-sized NiO-CeO2 solid solution after exsolution. Catalysis Communications, 2020, 138, 105951.	3.3	38
5	Dynamics of H in a Thin Gd Film: Evidence of Spinodal Decomposition. Journal of Physical Chemistry C, 2019, 123, 11933-11938.	3.1	3
6	The Interaction of CO ₂ with CeO ₂ Powder Explored by Correlating Adsorption and Thermal Desorption Analyses. Journal of Physical Chemistry C, 2018, 122, 9947-9957.	3.1	25
7	Effect of U Content on the Activation of H ₂ O on Ce _{1–<i>x</i>} U <i>_x</i> O _{2+Î} Surfaces. Chemistry of Materials, 2018, 30, 8650-8660.	6.7	8
8	Defect Chemistry of Oxides for Energy Applications. Advanced Materials, 2018, 30, e1706300.	21.0	58
9	Uranium oxidation kinetics monitored by in-situ X-ray diffraction. Journal of Nuclear Materials, 2017, 485, 202-206.	2.7	16
10	Preferred hydride growth orientations on oxide-coated gadolinium surfaces. Journal of Alloys and Compounds, 2012, 520, 98-104.	5.5	7
11	Hydrogen absorption in CexGd1â^x alloys. Journal of Alloys and Compounds, 2012, 532, 102-108.	5.5	8
12	Heat pretreatment-induced activation of gadolinium surfaces towards the initial precipitation of hydrides. Journal of Alloys and Compounds, 2010, 498, 26-29.	5.5	17
13	The very initial stage of hydride formation on polycrystalline gadolinium. Journal of Alloys and Compounds, 2009, 477, 188-192.	5.5	15
14	The vibrational spectra of N-phenylpyrrole in the gas phase, in argon matrices and in single crystals. Chemical Physics, 2007, 333, 168-178.	1.9	9
15	The crystal structure and vibrational spectra of two molecules emitting dual fluorescence: 4-(1H-Pyrrol-1-yl)benzonitrile (PBN) and 5-cyano-2-(1pyrrolyl)-pyridine (CPP). Chemical Physics, 2007, 335, 87-93.	1.9	3
16	The fluorescence of 5-cyano-2-(1-pyrrolyl)-pyridine (CPP) in different solvents and in solid argon: An experimental and theoretical study. Chemical Physics, 2007, 335, 79-86.	1.9	2
17	Charge-Transfer-Type Fluorescence of 4-(1H-Pyrrol-1-yl)benzonitrile (PBN) andN-Phenylpyrrole (PP) in Cryogenic Matrixes:Â Evidence for Direct Excitation of the CT Band. Journal of Physical Chemistry A, 2005, 109, 576-585.	2.5	13
18	Photophysics of Phenylpyrrole Derivatives and Their Acetonitrile Clusters in the Gas Phase and in Argon Matrixes:  Simulations of Structure and Reactivity. Journal of Physical Chemistry A, 2005, 109, 3830-3842.	2.5	6

#	Article	IF	CITATIONS
19	The Fluorescence of N-Phenylpyrrole in an Argon/Acetonitrile Matrix. Journal of Physical Chemistry A, 2003, 107, 9554-9560.	2.5	13
20	Molecular Dynamics Simulations of Site Geometries of Anthracene in an Argon Matrixâ€. Journal of Physical Chemistry A, 2000, 104, 3786-3791.	2.5	15