
I-Chung Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892159/publications.pdf Version: 2024-02-01

LCHUNC LU

#	Article	IF	CITATIONS
1	Applications of vacuum MAI on a portable mass spectrometer. International Journal of Mass Spectrometry, 2022, 474, 116798.	0.7	5
2	Reactivityâ€Tunable Palladium Precatalysts with Favorable Catalytic Properties in Suzuki–Miyaura Crossâ€Coupling Reactions. ChemCatChem, 2022, 14, .	1.8	1
3	An overview of biological applications and fundamentals of new <i>inlet</i> and <i>vacuum</i> ionization technologies. Rapid Communications in Mass Spectrometry, 2021, 35, e8829.	0.7	9
4	Novel ion source for a portable mass spectrometer. Rapid Communications in Mass Spectrometry, 2021, 35, e8503.	0.7	6
5	Sublimation Driven Ionization for Use in Mass Spectrometry: Mechanistic Implications. Journal of the American Society for Mass Spectrometry, 2021, 32, 114-123.	1.2	9
6	Self-assembled lanthanide-based helixes: synthetic control of the helical handedness by chirality of the ligand. Dalton Transactions, 2021, 51, 69-73.	1.6	3
7	Bulky Di(1-adamantyl)phosphinous Acid-Ligated Pd(II) Precatalysts for Suzuki Reactions of Unreactive Aryl Chlorides. ACS Omega, 2021, 6, 35134-35143.	1.6	2
8	New Strategy to Preserve Phosphate by Ionic Liquid Matrices in Matrix-Assisted Laser Desorption/Ionization: A Case of Adenosine Nucleotides. Molecules, 2020, 25, 1217.	1.7	1
9	Spontaneous Charge Separation and Sublimation Processes are Ubiquitous in Nature and in Ionization Processes in Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 304-315.	1.2	26
10	Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2017, 28, 2235-2245.	1.2	5
11	Development of an easily adaptable, high sensitivity source for inlet ionization. Analytical Methods, 2017, 9, 4971-4978.	1.3	14
12	Simplifying the ion source for mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 2568-2572.	0.7	22
13	Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization. Journal of the American Society for Mass Spectrometry, 2016, 27, 1491-1498.	1.2	17
14	Theoretical investigation of low detection sensitivity for underivatized carbohydrates in ESI and MALDI. Journal of Mass Spectrometry, 2016, 51, 1180-1186.	0.7	26
15	lonization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Annual Review of Analytical Chemistry, 2015, 8, 21-39.	2.8	54
16	Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2015, 26, 1242-1251.	1.2	36
17	Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms. Journal of Chemical Physics, 2014, 141, 164307.	1.2	13
18	Does decarboxylation make 2,5-dihydroxybenzoic acid special in matrix-assisted laser desorption/ionization?. Rapid Communications in Mass Spectrometry, 2014, 28, 1082-1088.	0.7	10

I-Снимс Lu

#	Article	IF	CITATIONS
19	Is energy pooling necessary in ultraviolet matrixâ€assisted laser desorption/ionization?. Rapid Communications in Mass Spectrometry, 2014, 28, 77-82.	0.7	18
20	lon Intensity and Thermal Proton Transfer in Ultraviolet Matrix-Assisted Laser Desorption/Ionization. Journal of Physical Chemistry B, 2014, 118, 4132-4139.	1.2	14
21	Thermal Proton Transfer Reactions in Ultraviolet Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2014, 25, 310-318.	1.2	54
22	lonâ€ŧoâ€neutral ratio of 2,5â€dihydroxybenzoic acid in matrixâ€assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry, 2013, 27, 955-963.	0.7	34
23	Frequency-Scanning MALDI Linear Ion Trap Mass Spectrometer for Large Biomolecular Ion Detection. Analytical Chemistry, 2011, 83, 8273-8277.	3.2	15
24	Investigations of Siliconâ^'Nitrogen Hydrides from Reaction of Nitrogen Atoms with Silane: Experiments and Calculations. Journal of Physical Chemistry A, 2008, 112, 8479-8486.	1.1	11
25	Dynamics of the reaction C(P3)+SiH4: Experiments and calculations. Journal of Chemical Physics, 2008, 129, 164304.	1.2	9
26	Exploring the dynamics of reaction N+SiH4 with crossed molecular-beam experiments and quantum-chemical calculations. Journal of Chemical Physics, 2008, 129, 174304.	1.2	5
27	Nonstatistical spin dynamics in photodissociation of H2O at 157nm. Journal of Chemical Physics, 2008, 128, 066101.	1.2	33
28	Development of a stable source of atomic oxygen with a pulsed high-voltage discharge and its application to crossed-beam reactions. Review of Scientific Instruments, 2007, 78, 083103.	0.6	28
29	Investigations of oxysilanes from the crossed-beam reaction of atomic oxygen with silane using tunable vacuum-ultraviolet ionization. Chemical Physics Letters, 2007, 444, 237-241.	1.2	9
30	Photodissociation dynamics of HI and DI at 157nm. Chemical Physics Letters, 2007, 449, 18-22.	1.2	5
31	Photodissociation dynamics of ketene at 157.6nm. Journal of Chemical Physics, 2006, 124, 024324.	1.2	5
32	Molecular beam studies of the F atom reaction with propyne: Site specific reactivity. Journal of Chemical Physics, 2005, 122, 044307.	1.2	14
33	Photodissociation dynamics of 1,2-butadiene at 157 nm. Journal of Chemical Physics, 2004, 121, 4684-4690.	1.2	8
34	Photodissociation Dynamics of 1,3-Butadiene at 157 nm. Journal of Physical Chemistry A, 2004, 108, 11470-11476.	1.1	9
35	Product angular anisotropy in CO2 photodissociation at 157 nm. Chemical Physics Letters, 2003, 382, 665-670.	1.2	22