Da Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3892048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362, 933-937.	6.0	950
2	Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia, 2017, 138, 72-82.	3.8	553
3	Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Materialia, 2019, 165, 228-240.	3.8	373
4	Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia, 2019, 167, 275-286.	3.8	172
5	Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018, 148, 51-55.	2.6	154
6	Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Materialia, 2020, 188, 517-527.	3.8	144
7	Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics, 2019, 110, 106476.	1.8	76
8	Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates. Acta Materialia, 2022, 223, 117480.	3.8	72
9	Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation. Journal of Nuclear Materials, 2018, 501, 208-216.	1.3	65
10	Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Materials Research Letters, 2019, 7, 152-158.	4.1	56
11	Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scripta Materialia, 2018, 148, 42-46.	2.6	54
12	Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. International Journal of Plasticity, 2021, 144, 103022.	4.1	51
13	Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. Journal of Materials Science and Technology, 2021, 69, 156-167.	5.6	48
14	Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2018, 769, 490-502.	2.8	46
15	Abnormal γ″ - ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scripta Materialia, 2018, 146, 281-285.	2.6	43
16	Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Materialia, 2018, 155, 134-138.	2.6	41
17	Diffusion controlled helium bubble formation resistance of FeCoNiCr high-entropy alloy in the half-melting temperature regime. Journal of Nuclear Materials, 2019, 526, 151747.	1.3	40
18	Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys. Journal of Alloys and Compounds, 2020, 844, 156162.	2.8	30

DA CHEN

#	Article	IF	CITATIONS
19	Highly pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Materialia, 2021, 210, 116843.	3.8	25
20	Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy. Journal of Nuclear Materials, 2018, 510, 187-192.	1.3	22
21	First-principles study of He behavior in a NiCoFeCr concentrated solid–solution alloy. Materials Research Letters, 2019, 7, 188-193.	4.1	21
22	Elemental partitioning as a route to design precipitation-hardened high entropy alloys. Journal of Materials Science and Technology, 2021, 72, 52-60.	5.6	20
23	Effects of minor alloying addition on He bubble formation in the irradiated FeCoNiCr-based high-entropy alloys. Journal of Nuclear Materials, 2020, 542, 152458.	1.3	15
24	Origin of increased helium density inside bubbles in Ni <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>x</mml:mi><mr alloys. Scripta Materialia, 2021, 191, 1-6.</mr </mml:mrow></mml:mrow </mml:msub></mml:math 	nl:mo>) </td <td>mml:mo></td>	m ml: mo>
25	The stability of γ′ precipitates in a multi-component FeCoNiCrTi0.2 alloy under elevated-temperature irradiation. Journal of Nuclear Materials, 2020, 540, 152364.	1.3	12
26	Elemental Phase Partitioning in the γ-γ″ Ni2CoFeCrNb0.15 High Entropy Alloy. Entropy, 2018, 20, 910.	1.1	10
27	Effect of oxygen pressure on the oxidation behavior of NiCoCr medium-entropy alloy at 800 °C. Corrosion Science, 2021, 185, 109411.	3.0	8
28	3D Upconversion Barcodes for Combinatory Wireless Neuromodulation in Behaving Animals. Advanced Healthcare Materials, 2022, 11, e2200304.	3.9	5
29	Temperature-dependent helium induced microstructural evolution in equiatomic NiCo and NiFe concentrated solid solution alloys. Journal of Nuclear Materials, 2021, 545, 152715.	1.3	4