Adem Ozcelik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3891755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals and applications of acoustics in microfluidics. , 2022, , 297-321.		5
2	Acoustic Tweezers for Single-Cell Manipulation. , 2022, , 1051-1077.		0
3	A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles. Biomicrofluidics, 2022, 16, 014103.	2.4	4
4	A Battery-Powered Fluid Manipulation System Actuated by Mechanical Vibrations. Actuators, 2022, 11, 116.	2.3	4
5	A practical microfluidic pump enabled by acoustofluidics and 3D printing. Microfluidics and Nanofluidics, 2021, 25, 5.	2.2	26
6	Surface Acoustic Wave Induced Heat Knockdown of Caenorhabditis Elegans. Hittite Journal of Science & Engineering, 2021, 8, 35-40.	0.5	1
7	Potential of the acoustic micromanipulation technologies for biomedical research. Biomicrofluidics, 2021, 15, 061301.	2.4	14
8	Acoustic Microfluidics. Annual Review of Analytical Chemistry, 2020, 13, 17-43.	5.4	173
9	Acoustic Tweezers for Single-Cell Manipulation. , 2020, , 1-27.		2
10	A Simple Approach for Controlling an Open-Source Syringe Pump. European Mechanical Science, 2020, 4, 166-170.	0.9	17
11	Acoustic Tweezers for Single-Cell Manipulation. , 2020, , 1-27.		0
12	Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 2019, 5, 32.	7.0	268
13	Acoustic actuation of <i>in situ</i> fabricated artificial cilia. Journal of Micromechanics and Microengineering, 2018, 28, 025012.	2.6	33
14	Acoustic tweezers for the life sciences. Nature Methods, 2018, 15, 1021-1028.	19.0	513
15	Acoustic actuation of bioinspired microswimmers. Lab on A Chip, 2017, 17, 395-400.	6.0	124
16	Mixing high-viscosity fluids via acoustically driven bubbles. Journal of Micromechanics and Microengineering, 2017, 27, 015008.	2.6	60
17	Mixing high-viscosity fluids via acoustically driven bubbles. Journal of Micromechanics and Microengineering, 2017, 27, .	2.6	3
18	Acoustofluidics: Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures (Small 37/2016). Small, 2016, 12, 5230-5230.	10.0	14

ADEM OZCELIK

#	Article	IF	CITATIONS
19	Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. Small, 2016, 12, 5120-5125.	10.0	95
20	Acoustofluidic actuation of in situ fabricated microrotors. Lab on A Chip, 2016, 16, 3532-3537.	6.0	51
21	Rotational manipulation of single cells and organisms using acoustic waves. Nature Communications, 2016, 7, 11085.	12.8	366
22	Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 2016, 11, 778-792.	11.9	148
23	Acoustofluidic coating of particles and cells. Lab on A Chip, 2016, 16, 4366-4372.	6.0	27
24	Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP Advances, 2015, 5, 097161.	1.3	9
25	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	6.0	60
26	Acoustofluidic Fluorescence Activated Cell Sorter. Analytical Chemistry, 2015, 87, 12051-12058.	6.5	76
27	Potential for reactive pulsed-dc magnetron sputtering of nanocomposite VOx microbolometer thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	6
28	Acoustofluidic Chemical Waveform Generator and Switch. Analytical Chemistry, 2014, 86, 11803-11810.	6.5	48
29	An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls. Analytical Chemistry, 2014, 86, 5083-5088.	6.5	122
30	Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications. Journal of Electronic Materials, 2013, 42, 901-905.	2.2	19
31	High-resistivity and high-TCR vanadium oxide thin films for infrared imaging prepared by bias target ion-beam deposition. , 2013, , .		8
32	The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe Thin Films. Applied Surface Science, 2009, 256, 1566-1572.	6.1	34
33	The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. Journal of Alloys and Compounds, 2008, 466, 447-450.	5.5	178
34	Fundamentals of Intrinsic Stress during Silicide Formation. AIP Conference Proceedings, 2007, , .	0.4	1
35	Rapid Characterization of Cell and Bacteria Counts using Computer Vision. Türk Doğa Ve Fen Dergisi, 0, , .	0.5	6