## Florence Margottin-Goguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3891708/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nature Communications, 2022, 13, 66.                                                                                                | 12.8 | 24        |
| 2  | SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells. Nature Communications, 2021, 12, 4582.                                                                                             | 12.8 | 17        |
| 3  | Binding to DCAF1 distinguishes TASOR and SAMHD1 degradation by HIV-2 Vpx. PLoS Pathogens, 2021, 17, e1009609.                                                                                                                  | 4.7  | 2         |
| 4  | Human T-Cell Lymphotropic Virus Type 1 Transactivator Tax Exploits the XPB Subunit of TFIIH during<br>Viral Transcription. Journal of Virology, 2020, 94, .                                                                    | 3.4  | 5         |
| 5  | HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing.<br>Scientific Reports, 2019, 9, 13154.                                                                                    | 3.3  | 21        |
| 6  | FOXO1 transcription factor plays a key role in T cell—HIV-1 interaction. PLoS Pathogens, 2019, 15, e1007669.                                                                                                                   | 4.7  | 23        |
| 7  | HUSH, a Link Between Intrinsic Immunity and HIV Latency. Frontiers in Microbiology, 2019, 10, 224.                                                                                                                             | 3.5  | 22        |
| 8  | HIV-2/SIV viral protein X counteracts HUSH repressor complex. Nature Microbiology, 2018, 3, 891-897.                                                                                                                           | 13.3 | 99        |
| 9  | HIV-1 Vpr degrades the HLTF DNA translocase in T cells and macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5311-5316.                                                 | 7.1  | 86        |
| 10 | Specific Inhibition of HIV Infection by the Action of Spironolactone in T Cells. Journal of Virology, 2016, 90, 10972-10980.                                                                                                   | 3.4  | 39        |
| 11 | Evidence that HIV-1 restriction factor SAMHD1 facilitates differentiation of myeloid THP-1 cells.<br>Virology Journal, 2015, 12, 201.                                                                                          | 3.4  | 2         |
| 12 | How SLX4 cuts through the mystery of HIV-1 Vpr-mediated cell cycle arrest. Retrovirology, 2014, 11, 117.                                                                                                                       | 2.0  | 11        |
| 13 | Reply to Pauls et al.: p21 is a master regulator of HIV replication in macrophages through dNTP<br>synthesis block. Proceedings of the National Academy of Sciences of the United States of America,<br>2014, 111, E1325-6.    | 7.1  | 15        |
| 14 | Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply. Retrovirology, 2013, 10, 30.                                                                   | 2.0  | 30        |
| 15 | Back to the cell cycle with SAMHD1 and its viral antagonist, Vpx. Retrovirology, 2013, 10, .                                                                                                                                   | 2.0  | 0         |
| 16 | RNR2 repression by p21 restricts reverse transcription of HIV-1 and related-lentiviruses in macrophages. Retrovirology, 2013, 10, .                                                                                            | 2.0  | 0         |
| 17 | AT2 Receptor-Interacting Proteins ATIPs in the Brain. International Journal of Hypertension, 2013, 2013, 1-6.                                                                                                                  | 1.3  | 8         |
| 18 | p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis<br>pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>E3997-4006. | 7.1  | 83        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling<br>Complex, by Hijacking DCAF1/VprBP. PLoS ONE, 2013, 8, e77320.                                                            | 2.5  | 23        |
| 20 | SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nature Immunology, 2012, 13, 223-228.                                      | 14.5 | 719       |
| 21 | Molecular Insight into How HIV-1 Vpr Protein Impairs Cell Growth through Two Genetically Distinct<br>Pathways. Journal of Biological Chemistry, 2011, 286, 23742-23752.                                                  | 3.4  | 13        |
| 22 | The Human COP9 Signalosome Protects Ubiquitin-conjugating Enzyme 3 (UBC3/Cdc34) from β-Transducin<br>Repeat-containing Protein (βTrCP)-mediated Degradation. Journal of Biological Chemistry, 2010, 285,<br>17390-17397. | 3.4  | 4         |
| 23 | Identification of Clusterin Domain Involved in NF-κB Pathway Regulation. Journal of Biological Chemistry, 2010, 285, 4273-4277.                                                                                          | 3.4  | 31        |
| 24 | Limelight on two HIV/SIV accessory proteins in macrophage infection: Is Vpx overshadowing Vpr?.<br>Retrovirology, 2010, 7, 35.                                                                                           | 2.0  | 64        |
| 25 | Human TRIM Gene Expression in Response to Interferons. PLoS ONE, 2009, 4, e4894.                                                                                                                                         | 2.5  | 223       |
| 26 | An interview with Dr. Catherine Transy and Dr. Florence Margottin-Goguet on their highly cited paper published in <i>Cell Cycle</i> . Cell Cycle, 2009, 8, 2489-2490.                                                    | 2.6  | 8         |
| 27 | Vpu Antagonizes BST-2–Mediated Restriction of HIV-1 Release via β-TrCP and Endo-Lysosomal Trafficking.<br>PLoS Pathogens, 2009, 5, e1000450.                                                                             | 4.7  | 278       |
| 28 | The Human Immunodeficiency Virus Type 2 Vpx Protein Usurps the CUL4A-DDB1 <sup>DCAF1</sup><br>Ubiquitin Ligase To Overcome a Postentry Block in Macrophage Infection. Journal of Virology, 2009,<br>83, 4854-4860.       | 3.4  | 111       |
| 29 | HIV-1 VPR impairs cell growth through the inactivation of two genetically distinct host cell proteins.<br>Retrovirology, 2009, 6, .                                                                                      | 2.0  | 0         |
| 30 | The HIV-2 Vpx protein usurps the Cul4A-DDB1-DCAF1 ubiquitin ligase to overcome a post-entry block in macrophage infection. Retrovirology, 2009, 6, .                                                                     | 2.0  | 0         |
| 31 | Assembly with the Cul4A-DDB1DCAF1 Ubiquitin Ligase Protects HIV-1 Vpr from Proteasomal Degradation. Journal of Biological Chemistry, 2008, 283, 21686-21692.                                                             | 3.4  | 35        |
| 32 | Regulated Degradation of the HIV-1 Vpu Protein through a βTrCP-Independent Pathway Limits the Release<br>of Viral Particles. PLoS Pathogens, 2007, 3, e104.                                                              | 4.7  | 45        |
| 33 | HIV1 Vpr Arrests the Cell Cycle by Recruiting DCAF1/VprBP, a Receptor of the Cul4-DDB1 Ubiquitin Ligase. Cell Cycle, 2007, 6, 182-188.                                                                                   | 2.6  | 241       |
| 34 | RASSF1C, an Isoform of the Tumor Suppressor RASSF1A, Promotes the Accumulation of β-Catenin by Interacting with βTrCP. Cancer Research, 2007, 67, 1054-1061.                                                             | 0.9  | 55        |
| 35 | β-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation. Blood, 2007, 109, 5215-5222.                                                                              | 1.4  | 62        |
| 36 | Characterization and Functional Consequences of Underexpression of Clusterin in Rheumatoid<br>Arthritis. Journal of Immunology, 2006, 177, 6471-6479.                                                                    | 0.8  | 66        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | p300 Modulates ATF4 Stability and Transcriptional Activity Independently of Its Acetyltransferase<br>Domain. Journal of Biological Chemistry, 2005, 280, 41537-41545.                        | 3.4  | 79        |
| 38 | Prophase Destruction of Emi1 by the SCFβTrCP/Slimb Ubiquitin Ligase Activates the Anaphase Promoting Complex to Allow Progression beyond Prometaphase. Developmental Cell, 2003, 4, 813-826. | 7.0  | 320       |
| 39 | Control of Meiotic and Mitotic Progression by the F Box Protein β-Trcp1 In Vivo. Developmental Cell, 2003, 4, 799-812.                                                                       | 7.0  | 346       |
| 40 | ATF4 Degradation Relies on a Phosphorylation-Dependent Interaction with the SCF βTrCP Ubiquitin Ligase. Molecular and Cellular Biology, 2001, 21, 2192-2202.                                 | 2.3  | 234       |
| 41 | Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes and Development, 2001, 15, 3278-3285.                                                       | 5.9  | 158       |
| 42 | Inducible Degradation of lκBα by the Proteasome Requires Interaction with the F-box Protein h-βTrCP.<br>Journal of Biological Chemistry, 1999, 274, 7941-7945.                               | 3.4  | 120       |
| 43 | The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell.<br>Current Biology, 1999, 9, 207-211.                                              | 3.9  | 624       |
| 44 | Phosphorylation et ciblage au protéasome : la F-box connection Medecine/Sciences, 1999, 15, 1008.                                                                                            | 0.2  | 1         |
| 45 | A Novel Human WD Protein, h-βTrCP, that Interacts with HIV-1 Vpu Connects CD4 to the ER Degradation<br>Pathway through an F-Box Motif. Molecular Cell, 1998, 1, 565-574.                     | 9.7  | 630       |
| 46 | Binding of HIV-1 Nef to a Novel Thioesterase Enzyme Correlates with Nef-mediated CD4<br>Down-regulation. Journal of Biological Chemistry, 1997, 272, 13779-13785.                            | 3.4  | 88        |
| 47 | Inhibition of prokaryotic cell growth by HIV1 Vpr. Research in Virology, 1997, 148, 207-213.                                                                                                 | 0.7  | 12        |
| 48 | Interaction between the Cytoplasmic Domains of HIV-1 Vpu and CD4: Role of Vpu Residues Involved in CD4 Interaction andin VitroCD4 Degradation. Virology, 1996, 223, 381-386.                 | 2.4  | 68        |
| 49 | TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature, 1993, 362, 475-477.                                                                                               | 27.8 | 110       |
| 50 | Basal Promoter and Enhancer Element of Yeast U6 snRNA Gene. Journal of Molecular Biology, 1993, 233,<br>644-658.                                                                             | 4.2  | 74        |
| 51 | Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science, 1991, 251, 424-426.                                                                     | 12.6 | 188       |
| 52 | The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro<br>EMBO Journal, 1990, 9, 271-277.                                                     | 7.8  | 95        |