Wanpeng Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/389136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Science in China Series D: Earth Sciences, 2009, 52, 145-154.	0.9	156
2	The 2010 <i>M</i> _{<i>W</i>} 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. Journal of Geophysical Research, 2011, 116, .	3.3	84
3	The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology, 2016, 44, 875-878.	4.4	83
4	The 2011 MW 6.8 Burma earthquake: fault constraints provided by multiple SAR techniques. Geophysical Journal International, 2013, 195, 650-660.	2.4	71
5	Geodetic Constraints of the 2017 M _w 7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrustâ€Fold Belt. Geophysical Research Letters, 2018, 45, 6853-6861.	4.0	57
6	Source characteristics of the 2015 MW 7.8 Gorkha (Nepal) earthquake and its MW 7.2 aftershock from space geodesy. Tectonophysics, 2017, 712-713, 747-758.	2.2	43
7	A Slip Gap of the 2016 <i>M</i> _w Â6.6 Muji, Xinjiang, China, Earthquake Inferred from Sentinelâ€1 TOPS Interferometry. Seismological Research Letters, 2017, 88, 1054-1064.	1.9	38
8	Orthogonal Fault Rupture and Rapid Postseismic Deformation Following 2019 Ridgecrest, California, Earthquake Sequence Revealed From Geodetic Observations. Geophysical Research Letters, 2020, 47, e2019GL086888.	4.0	35
9	Patterns and mechanisms of coseismic and postseismic slips of the 2011 M W 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry. Tectonophysics, 2014, 632, 188-198.	2.2	32
10	Multidimensional Small Baseline Subset (MSBAS) for volcano monitoring in two dimensions: Opportunities and challenges. Case study Piton de la Fournaise volcano. Journal of Volcanology and Geothermal Research, 2017, 344, 121-138.	2.1	26
11	Resolving Surface Displacements in Shenzhen of China from Time Series InSAR. Remote Sensing, 2018, 10, 1162.	4.0	26
12	InSAR data reveal that the largest hydraulic fracturing-induced earthquake in Canada, to date, is a slow-slip event. Scientific Reports, 2022, 12, 2043.	3.3	26
13	The 1998 <i>M</i> _{<i>w</i>} 5.7 Zhangbeiâ€Shangyi (China) earthquake revisited: A buried thrust fault revealed with interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	24
14	Significant lateral dip changes may have limited the scale of the 2015 <i>M</i> _{<i>w</i>} 7.8 Gorkha earthquake. Geophysical Research Letters, 2017, 44, 8847-8856.	4.0	22
15	Supershear Rupture During the 2021 <i>M</i> _W 7.4 Maduo, China, Earthquake. Geophysical Research Letters, 2022, 49, .	4.0	22
16	Surface deformation associated with the 2015 Mw 8.3 Illapel earthquake revealed by satellite-based geodetic observations and its implications for the seismic cycle. Earth and Planetary Science Letters, 2017, 460, 222-233.	4.4	20
17	Using Long-Term SAR Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment. Remote Sensing, 2019, 11, 2230.	4.0	19
18	The 2018 <i>M</i> _{<i>W</i>} 7.5 Papua New Guinea Earthquake: A Dissipative and Cascading Rupture Process. Geophysical Research Letters, 2020, 47, e2020GL089271.	4.0	18

Wanpeng Feng

#	Article	IF	CITATIONS
19	The 2009 L'Aquila <italic>M</italic> _W 6.3 earthquake: a new technique to locate the hypocentre in the joint inversion of earthquake rupture process. Geophysical Journal International, 0, , .	2.4	16
20	Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSATâ€⊋ DINSAR time series analysis. Geophysical Research Letters, 2017, 44, 2716-2724.	4.0	16
21	Source process of M s6.4 earthquake in Ning'er, Yunnan in 2007. Science in China Series D: Earth Sciences, 2009, 52, 180-188.	0.9	13
22	2017 MwÂ8.1 Tehuantepec Earthquake: Deep Slip and Rupture Directivity Enhance Ground Shaking but Weaken the Tsunami. Seismological Research Letters, 2018, 89, 1314-1322.	1.9	13
23	Fast subsidence in downtown of Seattle observed with satellite radar. Remote Sensing Applications: Society and Environment, 2016, 4, 179-187.	1.5	12
24	Source Characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, Earthquake Derived from the Advanced Land Observation Satellite 2 Data. Remote Sensing, 2019, 11, 1999.	4.0	12
25	Cumulative and Coseismic (During the 2016 M w 6.6 Aketao Earthquake) Deformation of the Dextralâ€ S lip Muji Fault, Northeastern Pamir Orogen. Tectonics, 2019, 38, 3975-3989.	2.8	12
26	Complex multiple-segment ruptures of the 28 September 2018, Sulawesi, Indonesia, earthquake. Science Bulletin, 2019, 64, 650-652.	9.0	12
27	Source parameters of the 2017 <i>M</i> w 6.2 Yukon earthquake doublet inferred from coseismic GPS and ALOS-2 deformation measurements. Geophysical Journal International, 2019, 216, 1517-1528.	2.4	12
28	Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models. International Journal of Remote Sensing, 2021, 42, 4361-4379.	2.9	11
29	An automated insar processing system: Potentials and challenges. , 2016, , .		10
30	Diverse rupture processes of the 2014 Kangding, China, earthquake doublet (MW 6.0 and 5.7) and driving mechanisms of aftershocks. Tectonophysics, 2021, 820, 229118.	2.2	9
31	Source complexity of the 2016 <i>M</i> _W 7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data. Earth and Planetary Physics, 2018, 2, 1-17.	1.1	7
32	Reconstruction and Evaluation of DEMs From Bistatic Tandem-X SAR in Mountainous and Coastal Areas of China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5152-5170.	4.9	7
33	Source Characteristics and Exacerbated Tsunami Hazard of the 2020 Mw 6.9 Samos Earthquake in Eastern Aegean Sea. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	7
34	Source Characteristics of the 2017 MsÂ6.6 (MwÂ6.3) Jinghe Earthquake in the Northeastern Tien Shan. Seismological Research Letters, 2020, 91, 745-757.	1.9	5
35	Confirmation and Characterization of the Rupture Model of the 2017 MsÂ7.0 Jiuzhaigou, China, Earthquake. Seismological Research Letters, 2021, 92, 2927-2942.	1.9	5
36	Using small baseline Interferometric SAR to map nonlinear ground motion: a case study in Northern Tibet. Journal of Applied Geodesy, 2009, 3, .	1.1	3

#	Article	IF	CITATIONS
37	Confirmation of the double-asperity model for the 2016 MW 6.6 Akto earthquake (NW China) by seismic and InSAR data. Journal of Asian Earth Sciences, 2019, 184, 103998.	2.3	3
38	Inelastic earthquake damage. Nature Geoscience, 2020, 13, 661-662.	12.9	3
39	Mechanism of the 2017 <i>M</i> w 6.3 Pasni earthquake and its significance for future major earthquakes in the eastern Makran. Geophysical Journal International, 2022, 231, 1434-1445.	2.4	3
40	Joint Inversion of Geodetic Observations and Relative Weighting—The 1999 Mw 7.6 Chi-Chi Earthquake Revisited. Remote Sensing, 2020, 12, 3125.	4.0	2
41	MULTIDIMENSIONAL SMALL BASELINE SUBSET (MSBAS) FOR VOLCANO MONITORING IN TWO DIMENSIONS: OPPORTUNITIES AND CHALLENGES. CASE STUDY PITON DE LA FOURNAISE VOLCANO. , 2017, , .		0