
Ümİt Demİr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3891341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnO Nanosheets-Decorated ERGO Layers: An Efficient Electrochemical Sensor for Non-Enzymatic Uric Acid Detection. IEEE Sensors Journal, 2022, 22, 5555-5561.	4.7	20
2	Ni(OH)2-electrochemically reduced graphene oxide nanocomposites as anode electrocatalyst for direct ethanol fuel cell in alkaline media. Chemical Physics Letters, 2021, 763, 138208.	2.6	13
3	Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films, 2020, 693, 137695.	1.8	38
4	Oneâ€pot Electrochemical Synthesis of Ni Nanoparticlesâ€decorated Electroreduced Graphene Oxide for Improved NADH Sensing. Electroanalysis, 2020, 32, 2323-2329.	2.9	10
5	One-Pot Electrochemical Synthesis of Lead Oxide- Electrochemically Reduced Graphene Oxide Nanostructures and Their Electrocatalytic Applications. IEEE Sensors Journal, 2019, 19, 4781-4788.	4.7	13
6	Electrochemical fabrication of Ni or Ni(OH)2@Ni nanoparticle-decorated reduced graphene oxide for supercapacitor applications. Electrochimica Acta, 2019, 302, 109-118.	5.2	54
7	Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation. Applied Catalysis B: Environmental, 2018, 235, 56-65.	20.2	34
8	One-Pot electrochemical fabrication of Single-Crystalline SnO nanostructures on Si and ITO substrates for Catalytic, sensor and energy storage applications. Applied Surface Science, 2018, 448, 510-521.	6.1	12
9	Stoichiometry, Morphology, and Size-Controlled Electrochemical Fabrication of Cu _{<i>x</i>} O (<i>x</i> = 1, 2) at Underpotential. Langmuir, 2017, 33, 3960-3967.	3.5	13
10	Photoelectrochemical properties of nanostructured ZnO prepared by controlled electrochemical underpotential deposition. Electrochimica Acta, 2013, 108, 281-287.	5.2	22
11	Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface Science, 2013, 611, 54-59.	1.9	75
12	Size-Controlled Electrochemical Growth of PbS Nanostructures into Electrochemically Patterned Self-Assembled Monolayers. Langmuir, 2012, 28, 8571-8578.	3.5	19
13	Orientation-controlled synthesis and characterization of Bi2Te3 nanofilms, and nanowires via electrochemical co-deposition. Electrochimica Acta, 2011, 56, 2385-2393.	5.2	15
14	Preparation of PbS thin films: A new electrochemical route for underpotential deposition. Electrochimica Acta, 2009, 54, 6554-6559.	5.2	36
15	Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method. Thin Solid Films, 2009, 517, 5419-5424.	1.8	30
16	Atom-by-Atom Growth of CdS Thin Films by an Electrochemical Co-deposition Method:  Effects of pH on the Growth Mechanism and Structure. Journal of Physical Chemistry C, 2007, 111, 2670-2674.	3.1	39
17	A Mechanistic and Characteristic Investigation of Electrooxidation of 2â€Aminoâ€3â€cyanoâ€4â€methylthiophene. Macromolecular Chemistry and Physics, 2007, 208, 2367-2374.	2.2	5
18	Electrochemically Induced Atom-by-Atom Growth of ZnS Thin Films:Â A New Approach for ZnS Co-deposition. Langmuir, 2006, 22, 4415-4419.	3.5	38

Üмİт Demİr

#	Article	IF	CITATIONS
19	Electrochemical Atom-by-Atom Growth of PbS by Modified ECALE Method. Chemistry of Materials, 2005, 17, 935-937.	6.7	50
20	Synthesis and Characterization of Electropolymerized Poly(2-amino-3-cyano-4-β-naphthylthiophene). Macromolecules, 2004, 37, 7168-7173.	4.8	11
21	Electrochemical Studies of the Effects of pH and the Surface Structure of Gold Substrates on the Underpotential Deposition of Sulfur. Journal of Physical Chemistry B, 2001, 105, 10588-10593.	2.6	34
22	A Scanning Tunneling Microscopy Study of Electrochemically Grown Cadmium Sulfide Monolayers on Au(111). Langmuir, 1994, 10, 2794-2799.	3.5	111