
RamÃ³n Hurtado-Guerrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3890906/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces. PLoS Pathogens, 2012, 8, e1002373.	2.1	150
2	Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO Journal, 2008, 27, 2780-2788.	3.5	102
3	Structural Insights into the Mechanism of Protein O-Fucosylation. PLoS ONE, 2011, 6, e25365.	1.1	85
4	Substrateâ€Guided Frontâ€Face Reaction Revealed by Combined Structural Snapshots and Metadynamics for the Polypeptide <i>N</i> â€Acetylgalactosaminyltransferaseâ€2. Angewandte Chemie - International Edition, 2014, 53, 8206-8210.	7.2	80
5	Design, Synthesis, and Evaluation of Inhibitors of Trypanosomal and Leishmanial Dihydrofolate Reductase. Journal of Medicinal Chemistry, 1999, 42, 4300-4312.	2.9	79
6	Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nature Communications, 2015, 6, 6937.	5.8	77
7	Polypeptide GalNAc-Ts: from redundancy to specificity. Current Opinion in Structural Biology, 2019, 56, 87-96.	2.6	73
8	Structure of Saccharomyces cerevisiae Chitinase 1 and Screening-Based Discovery of Potent Inhibitors. Chemistry and Biology, 2007, 14, 589-599.	6.2	72
9	Molecular Mechanisms of Yeast Cell Wall Glucan Remodeling. Journal of Biological Chemistry, 2009, 284, 8461-8469.	1.6	67
10	Deciphering the Nonâ€Equivalence of Serine and Threonine <i>O</i> â€Clycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an antiâ€MUC1 Antibody. Angewandte Chemie - International Edition, 2015, 54, 9830-9834.	7.2	65
11	A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nature Chemical Biology, 2016, 12, 240-246.	3.9	58
12	Serological evidence of SARSâ€CoVâ€2 and coâ€infections in stray cats in Spain. Transboundary and Emerging Diseases, 2022, 69, 1056-1064.	1.3	58
13	Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. Journal of Biological Chemistry, 2018, 293, 7408-7422.	1.6	57
14	NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. Journal of Biological Chemistry, 2017, 292, 11423-11430.	1.6	56
15	Molecular mechanisms of O-GlcNAcylation. Current Opinion in Structural Biology, 2008, 18, 551-557.	2.6	53
16	Structural basis for arginine glycosylation of host substrates by bacterial effector proteins. Nature Communications, 2018, 9, 4283.	5.8	52
17	Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nature Chemical Biology, 2020, 16, 351-360.	3.9	52
18	Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072.	6.6	51

#	Article	IF	CITATIONS
19	Cross-Link Formation of the Cysteine 228â^'Tyrosine 272 Catalytic Cofactor of Galactose Oxidase Does Not Require Dioxygen. Biochemistry, 2008, 47, 10428-10439.	1.2	47
20	A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 2016, 138, 3325-3332.	6.6	47
21	Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Molecular Cell, 2018, 71, 718-732.e9.	4.5	45
22	Structural basis for substrate specificity and catalysis of $\hat{l}\pm 1$,6-fucosyltransferase. Nature Communications, 2020, 11, 973.	5.8	45
23	Novel inhibitors of leishmanial dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 977-980.	1.0	44
24	SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals, 2021, 11, 667.	1.0	44
25	Mitochondrial Localization of the Mevalonate Pathway Enzyme 3-Hydroxy-3-methyl-glutaryl-CoA Reductase in the Trypanosomatidae. Molecular Biology of the Cell, 2004, 15, 1356-1363.	0.9	43
26	Natural Product–Guided Discovery of a Fungal Chitinase Inhibitor. Chemistry and Biology, 2010, 17, 1275-1281.	6.2	41
27	Detection of Tumor-Associated Glycopeptides by Lectins: The Peptide Context Modulates Carbohydrate Recognition. ACS Chemical Biology, 2015, 10, 747-756.	1.6	39
28	Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death. Scientific Reports, 2016, 6, 33189.	1.6	39
29	The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. Journal of Biological Chemistry, 2017, 292, 21304-21319.	1.6	38
30	The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nature Communications, 2017, 8, 1959.	5.8	37
31	The Mechanism of Allosteric Coupling in Choline Kinase α1 Revealed by the Action of a Rationally Designed Inhibitor. Angewandte Chemie - International Edition, 2013, 52, 4582-4586.	7.2	36
32	Serine versus Threonine Glycosylation with αâ€ <i>O</i> â€GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry - A European Journal, 2014, 20, 12616-12627.	1.7	36
33	Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chemical Science, 2016, 7, 2294-2301.	3.7	35
34	Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4. ACS Central Science, 2018, 4, 1274-1290.	5.3	35
35	Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochemical Journal, 2010, 426, 281-292.	1.7	33
36	The Use of Fluoroproline in MUC1 Antigen Enables Efficient Detection of Antibodies in Patients with Prostate Cancer. Journal of the American Chemical Society, 2017, 139, 18255-18261.	6.6	33

#	Article	IF	CITATIONS
37	Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 9952-9960.	6.6	33
38	Structural and kinetic studies of a series of mutants of galactose oxidase identified by directed evolution. Protein Engineering, Design and Selection, 2004, 17, 141-148.	1.0	29
39	Cenetic and structural validation of <i><scp>A</scp>spergillus fumigatus</i> â€ <scp>UDP</scp> â€ <i><scp>N</scp></i> â€acetylglucosamine pyrophosphorylase as an antifungal target. Molecular Microbiology, 2013, 89, 479-493.	1.2	29
40	Discovery of inhibitors of the pentein superfamily protein dimethylarginine dimethylaminohydrolase (DDAH), by virtual screening and hit analysis. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3953-3956.	1.0	27
41	Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite <i>Encephalitozoon cuniculi</i> . Protein Science, 2009, 18, 1197-1209.	3.1	27
42	Structural and kinetic differences between human and <i>Aspergillus fumigatus</i> <scp>D</scp> -glucosamine-6-phosphate <i>N</i> -acetyltransferase. Biochemical Journal, 2008, 415, 217-223.	1.7	26
43	Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Current Opinion in Chemical Biology, 2012, 16, 479-487.	2.8	26
44	Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology, 2020, 30, 910-922.	1.3	25
45	FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. ACS Catalysis, 2021, 11, 9052-9065.	5.5	25
46	Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS Journal, 2015, 282, 715-731.	2.2	24
47	Synthesis, conformational analysis and <i>in vivo</i> assays of an anti-cancer vaccine that features an unnatural antigen based on an sp ² -iminosugar fragment. Chemical Science, 2020, 11, 3996-4006.	3.7	24
48	Inhibition of dimethylarginine dimethylaminohydrolase (DDAH) and arginine deiminase (ADI) by pentafluorophenyl (PFP) sulfonates. Chemical Communications, 2005, , 5563.	2.2	22
49	Genetic and structural validation of <i>Aspergillus fumigatus N</i> -acetylphosphoglucosamine mutase as an antifungal target. Bioscience Reports, 2013, 33, .	1.1	22
50	Discovery of a New Binding Site on Human Choline Kinase α1: Design, Synthesis, Crystallographic Studies, and Biological Evaluation of Asymmetrical Bispyridinium Derivatives. Journal of Medicinal Chemistry, 2014, 57, 507-515.	2.9	21
51	Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1). Scientific Reports, 2016, 6, 23793.	1.6	21
52	Recent structural and mechanistic insights into protein <i>O</i> -GalNAc glycosylation. Biochemical Society Transactions, 2016, 44, 61-67.	1.6	20
53	Design of α- <i>S</i> -Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety. Journal of Organic Chemistry, 2016, 81, 5929-5941.	1.7	20
54	A mechanism-inspired UDP- <i>N</i> -acetylglucosamine pyrophosphorylase inhibitor. RSC Chemical Biology, 2020, 1, 13-25.	2.0	20

#	Article	IF	CITATIONS
55	Glycomimetics Targeting Glycosyltransferases: Synthetic, Computational and Structural Studies of Lessâ€Polar Conjugates. Chemistry - A European Journal, 2016, 22, 7215-7224.	1.7	19
56	Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nature Communications, 2019, 10, 1669.	5.8	18
57	A hydrogen bond network in the active site of Anabaena ferredoxin-NADP+ reductase modulates its catalytic efficiency. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 251-263.	0.5	16
58	Structural Analysis of a GalNAcâ€T2 Mutant Reveals an Inducedâ€Fit Catalytic Mechanism for GalNAcâ€Ts. Chemistry - A European Journal, 2018, 24, 8382-8392.	1.7	16
59	Determination of the Concentration of IgG against the Spike Receptor-Binding Domain That Predicts the Viral Neutralizing Activity of Convalescent Plasma and Serum against SARS-CoV-2. Biology, 2021, 10, 208.	1.3	16
60	Glucoseâ€6â€phosphate as a probe for the glucosamineâ€6â€phosphate <i>N</i> â€acetyltransferase Michaelis complex. FEBS Letters, 2007, 581, 5597-5600.	1.3	15
61	Determination of Potential Scaffolds for Human Choline Kinase $\hat{I}\pm 1$ by Chemical Deconvolution Studies. ChemBioChem, 2013, 14, 1291-1295.	1.3	15
62	Citrobacter rodentium NleB Protein Inhibits Tumor Necrosis Factor (TNF) Receptor-associated Factor 3 (TRAF3) Ubiquitination to Reduce Host Type I Interferon Production. Journal of Biological Chemistry, 2016, 291, 18232-18238.	1.6	15
63	A perspective on structural and mechanistic aspects of protein <i>O</i> -fucosylation. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 443-450.	0.4	15
64	Structural and Mechanistic Basis of the Interaction between a Pharmacological Chaperone and Human Phenylalanine Hydroxylase. ChemBioChem, 2012, 13, 1266-1269.	1.3	14
65	Recent advances in the design of choline kinase α inhibitors and the molecular basis of their inhibition. Medicinal Research Reviews, 2021, 41, 902-927.	5.0	13
66	Streptococcus pneumoniae TIGR4 Flavodoxin: Structural and Biophysical Characterization of a Novel Drug Target. PLoS ONE, 2016, 11, e0161020.	1.1	13
67	Recent Progress on Fucosyltransferase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1455-1464.	1.1	12
68	Kinetic and functional properties of human mitochondrial phosphoenolpyruvate carboxykinase. Biochemistry and Biophysics Reports, 2016, 7, 124-129.	0.7	12
69	Anti-tumoral potential of a human granulysin-based, CEA-targeted cytolytic immunotoxin. Oncolmmunology, 2019, 8, 1641392.	2.1	12
70	Asparagine Tautomerization in Glycosyltransferase Catalysis. The Molecular Mechanism of Protein <i>O</i> -Fucosyltransferase 1. ACS Catalysis, 2021, 11, 9926-9932.	5.5	12
71	Atomic and Specificity Details of Mucin 1 <i>O</i> -Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. Jacs Au, 2022, 2, 631-645.	3.6	12
72	Stereoselective 1,3-dipolar cycloadditions of nitrones derived from amino acids. Asymmetric synthesis of N-(alkoxycarbonylmethyl)-3-hydroxypyrrolidin-2-ones. Tetrahedron, 2013, 69, 9381-9390.	1.0	11

#	Article	IF	CITATIONS
73	Choline Kinase Active Site Provides Features for Designing Versatile Inhibitors. Current Topics in Medicinal Chemistry, 2015, 14, 2684-2693.	1.0	11
74	Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chemical Communications, 2020, 56, 15137-15140.	2.2	10
75	Absence of SARS-CoV-2 Antibodies in Natural Environment Exposure in Sheep in Close Contact with Humans. Animals, 2021, 11, 1984.	1.0	9
76	Pharmacophoreâ€Based Virtual Screening to Discover New Active Compounds for Human Choline Kinase α1. Molecular Informatics, 2015, 34, 458-466.	1.4	8
77	Structural basis for the synthesis of the core 1 structure by C1GalT1. Nature Communications, 2022, 13, 2398.	5.8	8
78	Characterization of the cDNA and in vitro expression of the ram seminal plasma protein RSVP14. Gene, 2013, 519, 271-278.	1.0	7
79	Inhibitors against Fungal Cell Wall Remodeling Enzymes. ChemMedChem, 2018, 13, 128-132.	1.6	7
80	Evidence for substrate-assisted catalysis in <i>N</i> -acetylphosphoglucosamine mutase. Biochemical Journal, 2018, 475, 2547-2557.	1.7	7
81	Cofactor processing in galactose oxidase. Biochemical Society Transactions, 2003, 31, 506-9.	1.6	7
82	Crystal Structure of the FAD-Containing Ferredoxin-NADP ^{+} Reductase from the Plant Pathogen <i>Xanthomonas axonopodis</i> pv. citri. BioMed Research International, 2013, 2013, 1-6.	0.9	6
83	Plasmodium falciparum Apicomplexan-Specific Glucosamine-6-Phosphate <i>N</i> -Acetyltransferase Is Key for Amino Sugar Metabolism and Asexual Blood Stage Development. MBio, 2020, 11, .	1.8	6
84	Synthesis of O- and C-glycosides derived from β-(1,3)-d-glucans. Carbohydrate Research, 2013, 382, 9-18.	1.1	5
85	The closed conformation of the LDL receptor is destabilized by the low Ca ⁺⁺ concentration but favored by the high Mg ⁺⁺ concentration in the endosome. FEBS Letters, 2015, 589, 3534-3540.	1.3	5
86	Production of a Granulysin-Based, Tn-Targeted Cytolytic Immunotoxin Using Pulsed Electric Field Technology. International Journal of Molecular Sciences, 2020, 21, 6165.	1.8	5
87	Self-acetylation at the active site of phosphoenolpyruvate carboxykinase (PCK1) controls enzyme activity. Journal of Biological Chemistry, 2021, 296, 100205.	1.6	5
88	Protein O-Fucosyltransferase 1 Undergoes Interdomain Flexibility in Solution. Molecules, 2021, 26, 2105.	1.7	5
89	Synthesis, biological evaluation, in silico modeling and crystallization of novel small monocationic molecules with potent antiproliferative activity by dual mechanism. European Journal of Medicinal Chemistry, 2020, 207, 112797.	2.6	4
90	Fucosyltransferase-specific inhibition <i>via</i> next generation of fucose mimetics. Chemical Communications, 2021, 57, 1145-1148.	2.2	3

#	Article	IF	CITATIONS
91	Anticancer and Structure Activity Relationship of Non-Symmetrical Choline Kinase Inhibitors. Pharmaceutics, 2021, 13, 1360.	2.0	3
92	NleB/SseK-catalyzed arginine-glycosylation and enteropathogen virulence are finely tuned by a single variable position contiguous to the catalytic machinery. Chemical Science, 2021, 12, 12181-12191.	3.7	3
93	O-fucosylation stabilizes the TSR3 motif in thrombospondin-1 by interacting with nearby amino acids and protecting a disulfide bond. Journal of Biological Chemistry, 2022, 298, 102047.	1.6	3
94	Rational Design of Glycomimetic Compounds Targeting theSaccharomyces cerevisiaeTransglycosylase Gas2. Chemical Biology and Drug Design, 2016, 87, 163-170.	1.5	2
95	Choline kinase inhibition and docking studies of a series of 6-(benzylthio)-9H-purin-9-yl-pyridinium derivatives. Medicinal Chemistry Research, 2017, 26, 2809-2815.	1.1	2
96	Preclinical Studies of Granulysin-Based Anti-MUC1-Tn Immunotoxins as a New Antitumoral Treatment. Biomedicines, 2022, 10, 1223.	1.4	2
97	A Bump-and-Hole Approach to Dissect Regulation of Protein O-Glycosylation. Molecular Cell, 2020, 78, 803-805.	4.5	1