Christopher G Parsons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3890862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhalational Anesthetics Do Not Deteriorate Amyloid-β-Derived Pathophysiology in Alzheimer's Disease: Investigations on the Molecular, Neuronal, and Behavioral Level. Journal of Alzheimer's Disease, 2021, 84, 1193-1218.	2.6	1
2	The Al̂² aggregation modulator MRZ-99030 prevents and even reverses synaptotoxic effects of Al̂²1-42 on LTP even following serial dilution to a 500:1 stoichiometric excess of Al̂²1-42, suggesting a beneficial prion-like seeding mechanism. Neuropharmacology, 2020, 179, 108267.	4.1	5
3	The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology, 2019, 151, 21-32.	4.1	7
4	CNS repurposing - Potential new uses for old drugs: Examples of screens for Alzheimer's disease, Parkinson's disease and spasticity. Neuropharmacology, 2019, 147, 4-10.	4.1	17
5	The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology, 2018, 140, 184-192.	4.1	22
6	Involvement of GluN2B subunit containing N-methyl- d -aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer's disease (AD). Neuropharmacology, 2017, 123, 100-115.	4.1	29
7	Preclinical to phase II amyloid beta (A _β) peptide modulators under investigation for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2017, 26, 579-592.	4.1	23
8	MRZ-99030 – A novel modulator of Aβ aggregation: II – Reversal ofÂAβ oligomer-induced deficits in long-term potentiation (LTP) andÂcognitive performance in rats and mice. Neuropharmacology, 2015, 92, 170-182.	4.1	23
9	MRZ-99030 – A novel modulator of Aβ aggregation: I – Mechanism of action (MoA) underlying the potential neuroprotective treatment of Alzheimer's disease, glaucoma and age-related macular degeneration (AMD). Neuropharmacology, 2015, 92, 158-169.	4.1	27
10	Effects of sarizotan in animal models of ADHD: challenging pharmacokinetic–pharmacodynamic relationships. Journal of Neural Transmission, 2015, 122, 1221-1238.	2.8	3
11	Brain concentrations of mGluR5 negative allosteric modulator MTEP in relation to receptor occupancy – Comparison to MPEP. Pharmacological Reports, 2015, 67, 624-630.	3.3	9
12	Patch Clamp Combined with Voltage/Concentration Clamp to Determine the Kinetics and Voltage Dependency of N-Methyl-d-aspartate (NMDA) Receptor Open Channel Blockers. Methods in Molecular Biology, 2014, 1183, 43-63.	0.9	1
13	Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer's Disease. Neurotoxicity Research, 2013, 24, 358-369.	2.7	246
14	Preparation and testing of homocubyl amines as therapeutic NMDA receptor antagonists. Medicinal Chemistry Research, 2013, 22, 360-366.	2.4	25
15	Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds. International Journal of Neuropsychopharmacology, 2013, 16, 1361-1371.	2.1	29
16	GluN2A and GluN2B NMDA Receptor Subunits Differentially Modulate Striatal Output Pathways and Contribute to Levodopa-Induced Abnormal Involuntary Movements in Dyskinetic Rats. ACS Chemical Neuroscience, 2013, 4, 808-816.	3.5	13
17	Assessment of the effects of NS11394 and L-838417, α2/3 subunit-selective GABAA receptor-positive allosteric modulators, in tests for pain, anxiety, memory and motor function. Behavioural Pharmacology, 2012, 23, 790-801.	1.7	17
18	Alzheimer's disease, βâ€amyloid, glutamate, NMDA receptors and memantine – searching for the connections. British Journal of Pharmacology, 2012, 167, 324-352.	5.4	396

#	Article	IF	CITATIONS
19	Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer's disease. Expert Review of Neurotherapeutics, 2012, 12, 1351-1365.	2.8	39
20	Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology, 2011, 60, 982-990.	4.1	141
21	Synthesis of a series of Î ³ -amino alcohols comprising an N-methyl isoindoline moiety and their evaluation as NMDA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5795-5799.	2.2	16
22	Pharmacological characterization of MRZ-8676, a novel negative allosteric modulator of subtype 5 metabotropic glutamate receptors (mGluR5): focus on l-DOPA-induced dyskinesia. Journal of Neural Transmission, 2011, 118, 1703-1716.	2.8	25
23	In vivo evidence for functional NMDA receptor blockade by memantine in rat hippocampal neurons. Journal of Neural Transmission, 2010, 117, 1189-1194.	2.8	9
24	Memantine Improves Cognition and Reduces Alzheimer's-Like Neuropathology in Transgenic Mice. American Journal of Pathology, 2010, 176, 870-880.	3.8	188
25	Synergism of virtual screening and medicinal chemistry: Identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. Bioorganic and Medicinal Chemistry, 2009, 17, 5708-5715.	3.0	25
26	Potency, voltage-dependency, agonist concentration-dependency, blocking kinetics and partial untrapping of the uncompetitive N-methyl-d-aspartate (NMDA) channel blocker memantine at human NMDA (GluN1/GluN2A) receptors. Neuropharmacology, 2009, 56, 866-875.	4.1	63
27	Blocking kinetics of memantine on NR1a/2A receptors recorded in inside-out and outside-out patches from Xenopus oocytes. Journal of Neural Transmission, 2008, 115, 1367-1373.	2.8	6
28	Memantine does not show intracellular block of the NMDA receptor channel. European Journal of Pharmacology, 2008, 587, 99-103.	3.5	16
29	Positive and Negative Modulation of Group I Metabotropic Glutamate Receptors. Journal of Medicinal Chemistry, 2008, 51, 634-647.	6.4	49
30	Agonist concentration dependency of blocking kinetics but not equilibrium block of N-methyl-d-aspartate receptors by memantine. Neuropharmacology, 2007, 53, 415-420.	4.1	22
31	Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology, 2007, 53, 699-723.	4.1	593
32	Memantine as an Example of a Fast, Voltage-Dependent, Open Channel N-Methyl-d-Aspartate Receptor Blocker. Methods in Molecular Biology, 2007, 403, 15-36.	0.9	36
33	Searching for Drug Scaffolds with 3D Pharmacophores and Neural Network Ensembles. Angewandte Chemie - International Edition, 2007, 46, 5336-5339.	13.8	21
34	Virtual Screening for Selective Allosteric mGluR1 Antagonists and Structure–Activity Relationship Investigations for Coumarine Derivatives. ChemMedChem, 2007, 2, 1763-1773.	3.2	34
35	Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. European Journal of Pharmacology, 2007, 554, 18-29.	3.5	41
36	Inhibition of the α9α10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-d-aspartate receptors. European Journal of Pharmacology, 2007, 566, 11-19.	3.5	31

Christopher G Parsons

#	Article	IF	CITATIONS
37	mGlu1 and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology, 2006, 50, 1006-1015.	4.1	27
38	The antiallodynic effect of NMDA antagonists in neuropathic pain outlasts the duration of the in vivo NMDA antagonism. Neuropharmacology, 2006, 51, 12-17.	4.1	43
39	Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behavioural Pharmacology, 2006, 17, 411-424.	1.7	118
40	Predicting Compound Selectivity by Self-Organizing Maps: Cross-Activities of Metabotropic Glutamate Receptor Antagonists. ChemMedChem, 2006, 1, 1066-1068.	3.2	54
41	3-Nitropropionic acid toxicity in hippocampus: Protection throughN-methyl-D-aspartate receptor antagonism. Hippocampus, 2006, 16, 834-842.	1.9	33
42	New Allosteric Modulators of Metabotropic Glutamate Receptor 5 (mGluR5) Found by Ligand-Based Virtual Screening. ChemBioChem, 2005, 6, 620-625.	2.6	26
43	Peripherally acting NMDA receptor/glycine site receptor antagonists inhibit morphine tolerance. Neuropharmacology, 2005, 48, 360-371.	4.1	22
44	N-Methyl-d-Aspartate Receptors Mediate Endogenous Opioid Release in Enteric Neurons After Abdominal Surgery. Gastroenterology, 2005, 128, 2009-2019.	1.3	28
45	Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology, 2004, 47, 175-175.	4.1	0
46	Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology, 2004, 47, 175-183.	4.1	35
47	Chronic memantine does not block 3-nitropropionic acid-delayed ischaemic tolerance in rat hippocampal slicesex vivo. Neurotoxicity Research, 2003, 5, 617-22.	2.7	5
48	Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice and rats. European Journal of Pharmacology, 2003, 466, 99-111.	3.5	36
49	The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. International Journal of Geriatric Psychiatry, 2003, 18, S23-S32.	2.7	327
50	Expression of Polyglutamine-expanded Huntingtin Induces Tyrosine Phosphorylation of N-Methyl-D-aspartate Receptors. Journal of Biological Chemistry, 2003, 278, 33364-33369.	3.4	79
51	Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotoxicity Research, 2002, 4, 119-126.	2.7	42
52	Mrz 2/579, a fast kinetic NMDA channel blocker, reduces the development of morphine tolerance in awake rats. Pain, 2001, 91, 201-207.	4.2	19
53	NMDA receptors as targets for drug action in neuropathic pain. European Journal of Pharmacology, 2001, 429, 71-78.	3.5	210
54	Neuroprotective and symptomatological action of memantine relevant for alzheimer's disease — a unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research, 2000, 2, 85-97.	2.7	211

#	Article	IF	CITATIONS
55	Differential effects of NMDA–receptor antagonists on long-term potentiation and hypoxic/hypoglycaemic excitotoxicity in hippocampal slices. Neuropharmacology, 2000, 39, 631-642.	4.1	31
56	Expression of early hippocampal CA1 LTP does not lead to changes in AMPA-EPSC kinetics or sensitivity to cyclothiazide. Pflugers Archiv European Journal of Physiology, 1999, 437, 191-196.	2.8	14
57	Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology, 1999, 38, 85-108.	4.1	130
58	Memantine restores long term potentiation impaired by tonic N-methyl-d-aspartate (NMDA) receptor activation following reduction of Mg2+ In hippocampal slices. Neuropharmacology, 1999, 38, 1253-1259.	4.1	102
59	Electrophysiological Study, Biodistribution in Mice, and Preliminary PET Evaluation in a Rhesus Monkey of 1-Amino-3-[18F]fluoromethyl-5-methyl-adamantane (18F-MEM): A Potential Radioligand for Mapping the NMDA-Receptor Complex. Nuclear Medicine and Biology, 1998, 25, 323-330.	0.6	41
60	Budipine is a low affinity, N-methyl-d-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology, 1998, 37, 719-727.	4.1	21
61	Interactions of GYKI 52466 and NBQX with cyclothiazide at AMPA receptors: experiments with outside-out patches and EPSCs in hippocampal neurones. Neuropharmacology, 1998, 37, 1299-1320.	4.1	32
62	Effects of memantine and MKâ€801 on NMDAâ€induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 1996, 117, 689-697.	5.4	119
63	Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. British Journal of Pharmacology, 1996, 119, 195-204.	5.4	90
64	Interactions of 2,3â€benzodiazepines and cydothiazide at AMPA receptors: patch clamp recordings in cultured neurones and area CA1 in hippocampal slices. British Journal of Pharmacology, 1996, 117, 1209-1221.	5.4	47
65	Zinc changes AMPA receptor properties: Results of binding studies and patch clamp recordings. Neuropharmacology, 1996, 35, 503-509.	4.1	42
66	Learning deficits induced by chronic intraventricular infusion of quinolinic acid — protection by MK-801 and memantine. European Journal of Pharmacology, 1996, 296, 1-8.	3.5	88
67	Effects of the Uncompetitive NMDA Receptor Antagonist Memantine on Hippocampal Long-term Potentiation, Short-term Exploratory Modulation and Spatial Memory in Awake, Freely Moving Rats. European Journal of Neuroscience, 1996, 8, 565-571.	2.6	134
68	Memantine selectively depresses NMDA receptor-mediated responses of rat spinal neurones in vivo. Neuroscience Letters, 1994, 165, 37-40.	2.1	28
69	Patch clamp studies on the kinetics and selectivity of N-methyl-d-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology, 1993, 32, 1337-1350.	4.1	271
70	Whole cell and single channel analysis of the kinetics of glycineâ€sensitive Nâ€methylâ€Dâ€aspartate receptor desensitization. British Journal of Pharmacology, 1993, 109, 213-221.	5.4	37
71	Effects of intravenous μ and κ opioid receptor agonists on sensory responses of convergent neurones in the dorsal horn of spinalized rats. British Journal of Pharmacology, 1991, 103, 1230-1236.	5.4	14
72	Peripheral opioid receptors mediating antinociception in inflammation. Activation by endogenous opioids and role of the pituitary-adrenal axis. Pain, 1990, 41, 81-93.	4.2	61

#	Article	IF	CITATIONS
73	Spinal antinociceptive actions of μ―and ΰâ€opioids: the importance of stimulus intensity in determining †selectivity' between reflexes to different modalities of noxious stimulus. British Journal of Pharmacology, 1989, 98, 523-532.	5.4	42
74	Spinal antinociceptive actions and naloxone reversibility of intravenous μ―and κâ€opioids in spinalized rats: potency mismatch with values reported for spinal administration. British Journal of Pharmacology, 1989, 98, 533-543.	5.4	27
75	On the selectivity of intravenous μ- and κ-opioids between nociceptive and non-nociceptive reflexes in the spinalized rat. British Journal of Pharmacology, 1989, 98, 544-551.	5.4	9