
Anne Sverdrup-Thygeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3890555/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience, 2012, 62, 633-645.	4.9	633
2	A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters, 2012, 5, 421-431.	5.7	328
3	REVIEW: Can retention forestry help conserve biodiversity? A metaâ€analysis. Journal of Applied Ecology, 2014, 51, 1669-1679.	4.0	314
4	Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scandinavian Journal of Forest Research, 2010, 25, 295-308.	1.4	188
5	The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen. Biological Conservation, 2002, 106, 347-357.	4.1	131
6	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
7	Woodland key habitats in northern Europe: concepts, inventory and protection. Scandinavian Journal of Forest Research, 2010, 25, 309-324.	1.4	113
8	Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodiversity and Conservation, 2014, 23, 513-535.	2.6	81
9	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
10	What window traps can tell us: effect of placement, forest openness and beetle reproduction in retention trees. Journal of Insect Conservation, 2009, 13, 183-191.	1.4	59
11	Hollow oaks and beetle conservation: the significance of the surroundings. Biodiversity and Conservation, 2010, 19, 837-852.	2.6	59
12	Ecological continuity and assumed indicator fungi in boreal forest: the importance of the landscape matrix. Forest Ecology and Management, 2003, 174, 353-363.	3.2	49
13	Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecology, 2017, 29, 76-84.	1.6	47
14	Insect-Fungus Interactions in Dead Wood Systems. Zoological Monographs, 2018, , 377-427.	1.1	45
15	Spatial configuration matters: a test of the habitat amount hypothesis for plants in calcareous grasslands. Landscape Ecology, 2016, 31, 1891-1902.	4.2	34
16	At which spatial and temporal scales can fungi indicate habitat connectivity?. Ecological Indicators, 2018, 91, 138-148.	6.3	34
17	Habitat connectivity affects specialist species richness more than generalists in veteran trees. Forest Ecology and Management, 2017, 403, 96-102.	3.2	33
18	Fungus-infected trees as islands in boreal forest: Spatial distribution of the fungivorous beetle Bolitophagus reticulatus (Coleoptera, Tenebrionidae). Ecoscience, 1998, 5, 486-493.	1.4	32

#	Article	IF	CITATIONS
19	Priority effects of early successional insects influence late successional fungi in dead wood. Ecology and Evolution, 2015, 5, 4896-4905.	1.9	32
20	Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biological Conservation, 2014, 180, 75-83.	4.1	30
21	Key Habitats in the Norwegian Production Forest: A Case Study. Scandinavian Journal of Forest Research, 2002, 17, 166-178.	1.4	29
22	Saproxylic beetles in high stumps and residual downed wood on clear-cuts and in forest edges. Scandinavian Journal of Forest Research, 2009, 24, 403-416.	1.4	28
23	Specialists in ancient trees are more affected by climate than generalists. Ecology and Evolution, 2015, 5, 5632-5641.	1.9	26
24	Plant species occurrence in a fragmented grassland landscape: the importance of species traits. Biodiversity and Conservation, 2015, 24, 547-561.	2.6	26
25	Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks. Journal of Insect Science, 2016, 16, 26.	1.5	26
26	Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecology and Evolution, 2017, 7, 1091-1100.	1.9	26
27	Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Functional Ecology, 2018, 32, 2571-2582.	3.6	25
28	Assessment of species diversity from species abundance distributions at different localities. Oikos, 2008, 117, 738-748.	2.7	24
29	Ecological traps and habitat loss, stump extraction and its effects on saproxylic beetles. Forest Ecology and Management, 2013, 290, 22-29.	3.2	24
30	Effects of stump extraction on saproxylic beetle diversity in <scp>S</scp> wedish clear uts. Insect Conservation and Diversity, 2013, 6, 483-493.	3.0	23
31	What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. Journal of Animal Ecology, 2021, 90, 1934-1947.	2.8	23
32	Do conservation measures in forest work? A comparison of three area-based conservation tools for wood-living species in boreal forests. Forest Ecology and Management, 2014, 330, 8-16.	3.2	22
33	A comparison of biodiversity values in boreal forest regeneration areas before and after forest certification. Scandinavian Journal of Forest Research, 2008, 23, 236-243.	1.4	19
34	Can airborne laser scanning assist in mapping and monitoring natural forests?. Forest Ecology and Management, 2016, 369, 116-125.	3.2	18
35	Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination. Scientific Reports, 2020, 10, 10872.	3.3	17
36	Revealing hidden insect–fungus interactions; moderately specialized, modular and anti-nested detritivore networks. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172833.	2.6	16

ANNE SVERDRUP-THYGESON

#	Article	IF	CITATIONS
37	Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecology and Evolution, 2020, 10, 819-831.	1.9	16
38	Traits mediate niches and coâ€occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 2021, 48, 3145-3157.	3.0	16
39	Functional structure of European forest beetle communities is enhanced by rare species. Biological Conservation, 2022, 267, 109491.	4.1	16
40	Scale-specific responses of saproxylic beetles: combining dead wood surveys with data from satellite imagery. Journal of Insect Conservation, 2015, 19, 1053-1062.	1.4	15
41	Introducing the index-based ecological condition assessment framework (IBECA). Ecological Indicators, 2021, 124, 107252.	6.3	15
42	Short-term effects of stump harvesting on millipedes and centipedes on coniferous tree stumps. Forest Ecology and Management, 2016, 371, 67-74.	3.2	14
43	Stable fly (Stomoxys calcitrans) and house fly (Musca domestica) densities: a comparison of three monitoring methods on pig farms. Journal of Pest Science, 2011, 84, 273-280.	3.7	12
44	Numerical Responses of Saproxylic Beetles to Rapid Increases in Dead Wood Availability following Geometrid Moth Outbreaks in Sub-Arctic Mountain Birch Forest. PLoS ONE, 2014, 9, e99624.	2.5	12
45	Choosy beetles: How host trees and southern boreal forest naturalness may determine dead wood beetle communities. Forest Ecology and Management, 2021, 487, 119023.	3.2	12
46	Predicting hotspots for red-listed species: multivariate regression models for oak-associated beetles. Insect Conservation and Diversity, 2011, 4, 53-59.	3.0	11
47	Trophic levels and habitat specialization of beetles caught on experimentally added aspen wood: Does trap type really matter?. Journal of Insect Conservation, 2015, 19, 163-173.	1.4	11
48	Near-natural forests harbor richer saproxylic beetle communities than those in intensively managed forests. Forest Ecology and Management, 2020, 466, 118124.	3.2	11
49	Semiâ€field experiments investigating facilitation: arrival order decides the interrelationship between two saproxylic beetle species. Ecological Entomology, 2012, 37, 395-401.	2.2	10
50	Veteran trees are a source of natural enemies. Scientific Reports, 2020, 10, 18485.	3.3	10
51	Flattening the curve: approaching complete sampling for diverse beetle communities. Insect Conservation and Diversity, 2022, 15, 157-167.	3.0	10
52	Stump extraction in the surrounding landscape: Predatory saproxylic beetles are more negatively affected than lower trophic levels. Forest Ecology and Management, 2018, 408, 75-86.	3.2	9
53	Sampling beetle communities: Trap design interacts with weather and species traits to bias capture rates. Ecology and Evolution, 2020, 10, 14300-14308.	1.9	9
54	Setting reference levels and limits for good ecological condition in terrestrial ecosystems – Insights from a case study based on the IBECA approach. Ecological Indicators, 2020, 116, 106492.	6.3	9

#	Article	IF	CITATIONS
55	Environmental conditions alter successional trajectories on an ephemeral resource: a field experiment with beetles in dead wood. Oecologia, 2020, 194, 205-219.	2.0	8
56	Spatial Overlap between Environmental Policy Instruments and Areas of High Conservation Value in Forest. PLoS ONE, 2014, 9, e115001.	2.5	8
57	Using mass scaling of movement cost and resource encounter rate to predict animal body size–Population density relationships. Theoretical Population Biology, 2013, 86, 23-28.	1.1	7
58	Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks. Ecology and Evolution, 2017, 7, 7987-7997.	1.9	7
59	Species composition of beetles grouped by host association in hollow oaks reveals management-relevant patterns. Journal of Insect Conservation, 2020, 24, 65-86.	1.4	6
60	DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212622.	2.6	6
61	Legacies of invertebrate exclusion and tree secondary metabolites control fungal communities in dead wood. Molecular Ecology, 2022, 31, 3241-3253.	3.9	6
62	Longâ€lasting effects of logging on beetles in hollow oaks. Ecology and Evolution, 2018, 8, 10126-10137.	1.9	5
63	Moth species richness and diversity decline in a 30-year time series in Norway, irrespective of species' latitudinal range extent and habitat. Journal of Insect Conservation, 2021, 25, 887-896.	1.4	5
64	Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conservation Genetics Resources, 2014, 6, 641-643.	0.8	4
65	Diptera in clear-felling stumps like it dry. Scandinavian Journal of Forest Research, 2019, 34, 673-677.	1.4	2
66	Veteran trees have divergent effects on beetle diversity and wood decomposition. PLoS ONE, 2021, 16, e0248756.	2.5	2
67	Colonization of experimentally arranged resource patches - a case study of fungivorous beetles. Entomologica Fennica, 2010, 21, 139-150.	0.6	1
68	Disentangling phylogenetic relations and biogeographic history within the Cucujus haematodes species group (Coleoptera: Cucujidae). Molecular Phylogenetics and Evolution, 2022, 173, 107527.	2.7	1