Luis Diaz-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3890469/publications.pdf

Version: 2024-02-01

28 995 18 27 papers citations h-index g-index

28 28 28 1543
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate Polymers, 2022, 278, 118924.	10.2	54
2	Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Materials Science and Engineering C, 2021, 120, 111773.	7.3	83
3	Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics, 2021, 13, 304.	4.5	28
4	Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering. Bioprinting, 2021, 22, e00136.	5.8	15
5	Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals, 2021, 14, 921.	3.8	25
6	3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics, 2021, 13, 1421.	4.5	35
7	Deep Learning for Automated Analysis of Cellular and Extracellular Components of the Foreign Body Response in Multiphoton Microscopy Images. Frontiers in Bioengineering and Biotechnology, 2021, 9, 797555.	4.1	2
8	Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Engineering - Part A, 2020, 26, 239-252.	3.1	23
9	Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds. Bioprinting, 2020, 18, e00076.	5.8	26
10	Tissue Engineering Scaffolds. , 2020, , 1317-1334.		4
10	Tissue Engineering Scaffolds., 2020, , 1317-1334. Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335.	4.5	15
	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene	4.5 2.1	
11	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue		15
11 12	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue Engineering - Part C: Methods, 2020, 26, 292-305. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition	2.1	15
11 12 13	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue Engineering - Part C: Methods, 2020, 26, 292-305. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients. Tissue Engineering - Part C: Methods, 2019, 25, 411-420. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds	2.1	15 10 28
11 12 13	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue Engineering - Part C: Methods, 2020, 26, 292-305. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients. Tissue Engineering - Part C: Methods, 2019, 25, 411-420. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomaterialia, 2019, 90, 37-48. Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering. Tissue Engineering - Part C:	2.1 2.1 8.3	15 10 28 172
11 12 13 14	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Tissue Engineering - Part C: Methods, 2020, 26, 292-305. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients. Tissue Engineering - Part C: Methods, 2019, 25, 411-420. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomaterialia, 2019, 90, 37-48. Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering. Tissue Engineering - Part C: Methods, 2019, 25, 12-24. Multimodal pore formation in calcium phosphate cements. Journal of Biomedical Materials Research -	2.1 2.1 8.3	15 10 28 172 29

#	ARTICLE	IF	CITATION
19	Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017, 527, 115-125.	5.2	42
20	pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 324-332.	4.3	46
21	Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiation Physics and Chemistry, 2016, 126, 1-8.	2.8	11
22	Polymeric prodrugâ; functionalized polypropylene films for sustained release of salicylic acid. International Journal of Pharmaceutics, 2016, 511, 579-585.	5.2	12
23	Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology. Carbohydrate Polymers, 2016, 142, 282-292.	10.2	38
24	Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. International Journal of Pharmaceutics, 2015, 496, 541-550.	5.2	60
25	Hydrophobically Modified Keratin Vesicles for GSH-Responsive Intracellular Drug Release. Bioconjugate Chemistry, 2015, 26, 1900-1907.	3.6	54
26	Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
27	Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Materials Science and Engineering C, 2014, 40, 180-188.	7.3	86
28	Silicone Rubber Modified with Methacrylic Acid to Host Antiseptic Drugs. Macromolecular Materials and Engineering, 2014, 299, 1240-1250.	3.6	17